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0. Let (H <>) be a Hilbert space and A4 be a bounded linear operator,

acting in H . Denote by SpA the spectrum of 4. Recall that 2 eJ is said to
be a reducing (normal) eigenvalue of A if there exists a nonzero element X

such that Ax=Ax, Ax=Ax and A belongs to the approximate point

spectrum n(A) of A if there exists a sequence of unit vectors {xn} cH
such that

”(A—ﬂ,l)xn”—)q (1)
We say that A is an approximate normal eigenvalue if
”(A—il)xn”Jr‘(A—il)*xn‘—)O' 2)

Denote by W(A) the numerical range of A4, i.e. W(A) = {<Ax, x> : ||x|| = 1} and
Icet r(A) = sup |/1| be the spectral radius of A4, W(A) = sup |/1| be the

AeSpA AeW(4)

numerical radius of 4. As it is well known [9],[10] r(A)S W(A), the
numerical radius is an operator norm, equivalent to the usual one, i.e.

w(A)S”A”ng(A), SO lsnzﬂ)s 2. The extremal values of this ratio are
w

investigated in [3]. The operator, satisfying F(A)=W(A) is said to be
), then A is

spectraloid and if w(A4)= ||A|| (equivalent condition 7(4) = ||A

said to be normaloid, so any normaloid operator is spectraloid.
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The operator A4 satisfies the Daugavet equality [2] if ||A+I||=||A||+1. We

introduce a slightly more general notion and say that A4 satisfies the Daugavet
equality at A if
[+ A1) =[] +|2]. 3)
1. We start by describing an elementary necessary and sufficient condition
for on operator to be spectraloid or normaloid.
Lemma 1. A Hilbert space operator A is
i) normaloid if and only if there exists a complex number A  such that

=] and 2 5p.;
ii) spectraloid if and only if there exists a complex number A such that
|ﬂ| = W(A) and A € SpA.
Note that the mentioned above conditions imply that in both cases
Ae 8W(A) M OSpA , where OM is the topological boundary of the set M .

Corollary. Properties of operators to be spectraloid or normaloid are
translation-invariant at least in one direction.

Proof. For any ue ¢ one has Sp(4+ul)=SpAd+u, W(A+ul)=w(4)+
+u and if argA =argu, then r(A+/J]):r(A)+|/J|, w(A+yI):w(A)+
+|u| . Thus for spectraloid operator r(A+pul)= w(A+ul) and for normaloid

operator
il o =) e = vt ar) <t gar < ] ] )
Proposition 1. The operator A is normaloid if and only if there exists a
number A, l| = ||A , which is an approximate normal eigenvalue of 4.

Proof. The sufficiency of this condition is evident. Passing to the necessity,
note that the boundary of the spectrum is contained in the approximate point
spectrum ([10], Problem 63), so the condition (1) is satisfied. Denote

A, = <Axn , X, > . From the inequality
|<Axn,xn>—l| =‘<(A—ll)xn,xn>‘ < ”(A—ll)xn”
one gets 4, = 4, hence

2 % 2 _ 2 2 _
=[47x, | -2re Az, +|4] SZ“A”—R@AM)—»O.

‘@—Mfﬂ

Note that conditions |/1| = ”A” and (1) imply (2).

Orland proved [14] that A € W(A) (the upper bar on the set denotes the

closure of the corresponding set) and |/1| = ||A|| imply 1 e Sp4.
For the particular case the conclusion may be formulated more precisely.
Lemma 2. Let A €W (A) and |/1| = ||A|| Then A is a reducing eigenvalue
of A.
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Proof. Let | = 2| =|( 4x.x)

2
] = e, )] < ol <l = 1
meaning that the Schwartz inequality becomes an equality, hence 4Ax = Ax. By
the same way 4 x = Ax.
This lemma is a generalization of a result by Laursen ([13], Lemma 1.10.)

, where ||x|| =1. Then

B

Denote D (a,r) = {z : |z - a| < r} the circle of the radius 7 on the complex

plane.
Example. Let S be the operator of the simple unilateral shift, realized, e.g.
as the operator of the multiplication by the independent variable

(Sf)(z)=zf(z) in the Hardy space H* (D) in the unit circle and

0 1 .
J, :(0 Oj' Denote by A4 the operator 0.5-S@.J,. Evidently w(4)=
= D(0,1/2). Any complex number y,|y| =1/2 satisfies

el () Jul=w(4)=r(4).
but 4 has no normal eigenvalues. This example shows that Lemma 2, in
general, is not true for spectraloid operators.

Lemma 3. Ler A Eﬂ'(A),;Eﬂ'(A*),/li U and

(4-pul) v,| >0,

||(A—)J)xn||—>0, x,|=[»l=1

Then lim<xn,yn>=0.

Proof. As (y—i)(xn,yn>=<(A—)J)xn,yn>—<xn,(1‘1—#1)*)’n>aWe
get

1
<
|<xn:yn>| |,Ll—/1|

Proposition 2. Let A € 0W (A4). Then A € SpA if and only if A is an

approximate normal eigenvalue.
Proof. The sufficiency of this condition is obvious. Let now

(Ja=20) |+ J(a= ) ) 0

e GW(A) M SpA . As the numerical range is convex, we may trace a support
line [ to W (A), passing through 4. Let 7 be the perpendicular to / at,
directed outward to W(A) Take a point HEP . As SpAc VI_/(A), then
u & SpA. According to well-known result of Stone [15] for the resolvent

=) .. . . 1
R,(4)=(A4-puI)" the following inequality is satisfied |R, (4)|< st (w7 ()

where dist(u,W(A)) is the distance from u to W(A). By choice of # one
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has dist(u, W(A)) = |/1 - u| and HRH (A)” < |l - u|_1 . According to the spectral

mapping theorem A € SpA implies (1 — "€ SpR (A). As for any operator
1

its norm is not less than the spectral radius HRu (A)H >
dist (u, SpA

—J—u",
)

finally HRH (A)H = |A - y|_1 . Recalling Proposition 1, we get

(Rﬂ (4) —/liu]j X, (Rﬂ (4) _/1;1) X,

A—i]:(u—l)(A—u])(Ry(A)_Ij

A—u

+ — 0.

and

*

(-0 =(-7) -t} ()1

A-u
finally we have ”(A _}“I)xn” +

‘(A—AI)*anAO.

This is the infinite dimensional analogue of Theorem 1.6.6 from [11]. As simple
consequence we get the following (known)
Corollary. Any eigenvalue, belonging to the boundary of the numerical
range is a normal eigenvalue.
Note that conditions |ﬂ| =w(A4) and (1) imply (2).
Combining Lemma 1 and Proposition 2, we get the following result.
Proposition 3. The operator A is spectraloid if and only if there exists a

number A,

/1| = W(A) which is an approximate normal eigenvalue of 4.
Lemmad. Let A, ue ﬁ(A)maW (A),/l #u and

”(A —/l])xn” BN o,||(A —ul)y,

Then lim<xn,yn>=0.

=1.

-0, X, Y,

—0.

Proof. By Proposition 2 ||(A - /,t])yn” — 0 implies H(A - y])* Y,
The proofis completed, recalling Lemma 3.
Lemma 5. Let A € OW (A)NSpA. Then A is either a normal eigenvalue

of A or there exists a sequence {X,,} C H of unit vectors, converging weakly
to the neutral element and satisfying (2).

Proof. Let {xn} be a sequence of unit vectors satisfying (1). As the unit
sphere in the Hilbert space is sequentially weak compact there exists a

subsequence (denoted again by the same letter) such that _w> x. Let € bea
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positive number. Choosing a subsequence, we may assume that [(4—A7)x,| <
<&/2,ne N . According to Mazur's theorem ([12], Chapter V, 1, Theorem 2) if

W
x —>x, then for any € there exist a convex combination
n

N N N
> oa,x, (an >0,Y a, :1) such that |[x— ¥ a,x,|[<&. Choosing N from the
n=1 n=1 n=l1
N
condition X —Z(X”xn <g/ 2||A -, we get
n=1

N

(4-21)> a,x,

n=1

l(4-1)]< <

J’_

(A—M)(x—nﬁ;anan

33/2+ﬁ:an ||(A—M)xn||<s/2+$/2ﬁ:an =¢.
n=1 n=1

If x# 60, then X isan eigenelement of 4.

A similar result, attributed to Putnam and Schechter, may be found in ([5],
Theorem (3.3)).

Returning to Proposition 3, note that as A €0 W(A) , for the first case A is a
normal eigenvalue. Evidently, in the finite dimensional space only this case may
be realized. This remark permits to give a complete description ([11], pp. 45,
60) of spectraloid and normaloid operators in finite dimensional unitary space.
In the second case A belongs ([3], Theorem (5.1), Corollary) to the essential
numerical range,(4), hence A €W, (A*). Finally, we arrive at the
following

Proposition 4. Let |ﬂ| =w(A)and ieSp4. Then A is either a normal
eigenvalue or A €W, (A) and Zew, (4).

2. We intend to give another necessary and sufficient condition for an
operator to be normaloid.

Proposition 5. The operator 4 is normaloid if and only if it satisfies the
Daugavet equality at a nonzero complex A .

Proof. Let first ||A +/l]|| = ||A|| +|/l| ,A # 0. According to a theorem of Barraa
and Boumazgour [1] for any two Hilbert space operators 4 and B conditions

||A+B|| =||A||+||B|| and |4[{|B|ew (B"4) are equivalent. Taking B=AI, we
get |A||4]e2-W(4) or |4|e™** e (4). This inclusion implies w(A)= A"

The necessity follows from relations (4).

The example of the two-dimensional Jordan block J,, for which des—pite
the equality w(J,+ul)=w(J,)+|u|,Yuel we have w(J,)=1/2,r(J,)=0
shows that the last equality is only necessary for an operator to be spectraloid.
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Remark 1. It is easy to see that the equality (3) implies ||A + #1” = ||A|| +|#|
forany p,argu=argl.

Remark 2. As the numerical range in a finite dimensional space is always
closed, the equality (3) in this case is equivalent to |4||e"** e W (4).

According to Lemma 2 the the equality (3) in finite dimensional space may

be fulfilled only in a finite number (not exceeding the dimension of the
underlying space) of directions.

As ||A||=sup|<Ax,x>| for any self-adjoint operator A, the Daugavet

=t
equality for self adjoint operators is satisfied on the real axis in positive or in
negative (or in both) direction. In the direction of the imaginary axis the Vidav

equality |/ +itd|=1+0(),r € ¥, — 0 holds [16], excluding the Daugavet
equality.

For the Fourier transform operator F', which is unitary in r (S") with
eigenvalues {il,ii} the Daugavet equality is satisfied along the coordinate
axes in both directions.

Remark 3. In [4] it has been shown that W(A) = ||A|| is equivalent to the

max||l+ tA|| =1 +||A|| '

equality i
Proposition 6. Conditions ||A +M|| = ||A||+|A| forany Ae€ and W(4)=
= D(O,"A") are equivalent.

Proof. The sufficiency follows from the result of Barraa and Boumazgour.
The second part may be proved, recalling [6] the equality

;}g%rgq)(lﬂl—lA—Mll)a,,g[nog,f]Re(e"‘”A),

According to Remark 2, the condition of the last Proposition cannot be fulfilled
in a finite dimensional space. For the operator of the simple unilateral shift S

IS+ 21| =sup|z+ 2| =1+|4|
‘Z‘Sl 4

meaning that the Daugavet equality is satisfied for any A €J .
Another upper bound for the norm of the translated operator (non trivial if

W(A) < ||A|| and more accurate for large values of |/1|) is proved in [7]

[4+21] < w(A)+w (4)+[A]" .

In general this estimate can not be sharpened. According to Proposition 2 from
[7] if 4> =0 then for any c the equality |[4+AI]=w(4)+\w*(4)+[A] is
satisfied. This equality implies ||A|| = 2w(A).
Proposition 7. The equality w(4)=|4|,1 e m is satisfied if and only if
w(A)+|z|<||4+zI|| for all z,argz =arg A .
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Proof. The condition of this proposition means that lim (”A +z[ ||—|z|) =
‘i‘%oc

= w(A). As the function
f(x) = ||A + x1|| —x,x > 0 is decreasing, we get ||A + z]” < w(A) + |z| .
Proposition 8. The equality ||A|| = 2W(A) is satisfied if and only if

st <2+ A 7+ |af for any [ 2] <25 Al 74+ o -

Proof. The necessity of the inequality is obvious. Let now the inequality be
satisfied. Then taking A = |l|exp (iqo) , we have

A 4
76)= g (-a-11) = g [w”’j” : M”z”

M‘*}OO M‘*}OO T
and W(4)= _(pes[gg’”)f(q’), implying w(4)<||4]/2.
The inverse inequality being valid for any operator, finally we get w(A) = ||A|| /2.
By [8], Corollary of Proposition 3 the last condition is satisfied if and only if
W (4)=D(0]4]/2).
Example. Let

As it is well known that for any matrix ||A|| = max {eig (A*A)} , Where eig is

the set of eigenvalues of the matrix. It is easy to check that

||D+M||:max{ 1+|A|2+2Rei,%+ /i+|/1|2}.

These expressions are equal on the right branch of the hyperbola, defined by the
equation

2
9(x+;j —3y2 =1.If A is a positive number, then ||D+M|| =1+A :||D||+A R

i.e. the Daugavet equality is satisfied on the real positive semi-axis. Beyond the
inner domain, bounded by the right branch of the hyperbola

D+ 21| =D 72+ w/||D||2 /4+ |/1|2 .
Note that on the ray z = re?,0<r< oo,% < |¢| < % at small values of 7 one has

the first equality, then the second.
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L. Z. Gevorgyan
Characterization of Spectraloid and Normaloid Operators

The spectraloid and normaloid operators are characterized in infinite dimensional
Hilbert space. It is shown how this description may be modified to settle the finite
dimensional case. The ratio between the norm and the numerical radius of a square
matrix was a subject of recent investigations. We consider this problem for bounded
operators and show that one extremal value is connected with the Daugavet equality and
the second is equivalent to an inequality. Possible shapes of the numerical ranges of
extremal operators are described.

JI. 3. T'eBoprsn

XapaKTepnchca CIIEKTPAJOUAHBIX H HOPMAJOUJHBIX OII€EpaToOpoB

XapakTepu3upyIOTCs CIEKTPAIOUIHbIE M HOPMAJIOMIHbIE ONEpaTopbl, JEHCTBYIO-
e B 0ECKOHEUHOMEPHOM THiIbOepTOBOM IpocTpaHcTBe. [TokazaHo, Kak JaHHOE OMHu-
CaHHE MOXKET OBITh NMPHUCIIOCOOJIEHO TSI KOHEYHOMEPHOTO ciiydas. JacTHOe HOpMBI U
YKCJIOBOTO pajinyca JJisl KBaJpaTHOM MaTpHIlbl pacCMaTPUBAJIOCh B HEAABHUX UCCIIE0-
BaHMsAX. JlaHHas mpoOJyieMa M3ydeHa Il OrpaHMYEHHBIX ONEepaTOpOB; IMOKA3aHO, YTO
OJIHO HKCTpEMabHOE 3HAYEHHUE CBSI3aHO C PaBEHCTBOM JlayraBera, a Jpyroe 3KBHBa-
JICHTHO HEKOTOpPOMY HepaBeHCTBY. OmnucaHbl BO3MOXKHBIE ()OPMBI YHCIOBBIX 00pa3oB
9KCTPEMAILHBIX OIIEPaTOPOB.

L. 9. Gunpqyui

Uytyunpuynhy b inpiuynhn oyjtpwnnputph punipuqpnidp

Punmpugpynd ko wmigbpe swthwuh hhjphippjut mupusnipiniunid gnpénn uy k-
wnpuinhn b inpdwynhn oybkpwwnnpubpp: 8nyg L mpynud, ph hiywbu wyny tjupugpnt-
pintup upnn £ dbuhnudt), npybugh swnwgh twb YEpowynn swthwh nhupnud: Lw-
nwlniup dwinphgh unpdh b pduyptt ownwynh pwinpnp htwnwgnnygl] £ Jtpekpu
Juunupjus nuumdtwuhpnipnibibpnud: Ujuintn pttwpyynud £ wyn junhpp vwhdw-
twthwly oy kpunnpubph hwdwp b gnyg Ewnpdnud, np uh Epunplidw) wipdbpp fuwjus
E Yunmquybtnh hwjuwuupmput htw, hull dniup hwdwpdtp E npnowlh wihwduw-
uwpnipjui: Ljwpugpius kb Epunplidw) oy bpuinnpubph pdughtt wuwnlkpibph htou-
pwynp nkupkpp:
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