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1. In this paper we consider a convergence acceleration of the classical
trigonometric interpolation
1 S —innx, 2k
Z f(xk)e X, =

N - . -
] — 1Tnx —
v (fx) ”;vf”e L 2N +1,4, 2N +1

via polynomial correction and along the ideas of rational (by ")
approximations. Polynomial correction described in this paper is known as the
Krylov-Lanczos approach (see [1-5] with references therein). The idea of
convergence acceleration via rational functions corrections is described in [3, 6,
7]. We reveal some theoretical estimates for convergence of the suggested
interpolations and discuss the problem of parameter determination.

In this section we introduce a rational interpolation as a method of
convergence acceleration of the classical trigonometric interpolation. By
ry (f.x) we denote the error of trigonometric interpolation

ry (fox)= /()= ().

We have
v

ry(f.x)= Z (f” _]?n)einm_,’_ i f]‘leian+7§1f;leinnx i

n=—N n=N+1

where f isthe n-th Fourier coefficient of f

A :%jjlf(x)e’i”“dx .

Consider a finite sequence of complex numbers 6 = {6, }

53(0,0,1):0”,

“;‘Zl and denote
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k k— - _ _
8y (0.c,)=6,"(0.c,)+0 8,7 (0.c,)+6, (5,’;+11(9,cn)+9_k5,’§ l(g,cn)) .
By 5: (cn) we denote the sequence that corresponds to the choiced=1. It is
easy to check that
5: (cn ) = Aif—k (cn)
where A'; (cn) are the classical backward finite differences defined by the
recurrence relation
AV (c,)=cps Ak (c, )= A () + AN (¢, )-

We proceed by sequential application of the Abel type transformations.

The following is easy to verify

2 0 —irNx _ in(N+1)x _ 0 eian _e—in(N+1)x
)= 1 i ae ) e e )
1 ®

1 irnx
rae e )

1 N 1 _ r imTnx

+(1+071€i’”)(1+0167i”x)”:ZN5” (eafn fn)e .

Reiteration of this transformation up to p times yields to the following

expansion of the error
_ [ -inNx _ in(N+1)x z 9—/{51/\{/71 (07417")
}"N (-f:x)_(e N e N+1 );Hjl(l_’_esei,ﬂ)(l_i_esei”X)
iTNx _ e—in(N+1)x) z 9/{51{1:/1 (97417,1 )
=] H; (1 +0_e™ ) (1 +0e ™ )
: S 50(0.0, )™

" [T (1+0 ™) (1+6,e7™ ) wwt
1 N -

57(0.4,- 1),

T o )ieaem) = 047

where the first two terms in the right-hand side can be viewed as the corrections
and the last two terms as the actual error. This viewing leads to the following
rational-trigonometric interpolation

_ _ 0.4 (0.,)
I°(f,x)=1 , —inNx _im(N+1)x £ KON n
N(f x) N (f X)+(€ € );Hil(l'i'@sem)(l"'@sem)

s —e )Y 0,5 (0.1,)
k= Hj:l (1 +0_e™ ) (1 +0.e7 )

+(e

with the error
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5[7 9’ imnx
k7 ]+97Seinx 1+9 efmx M;ﬂ n ( fn )6
1.

1
57 (e, imnx .
+H::1(1+‘9—sem)(l+'9v ﬂm) z ( Jo— f)e (1)

Theorem 1. Let feC[-11]. Then I§(f,x) is an interpolation of f on

i (f.x)=

the equidistant grid x,, :%, |m|< N for every sequence 6 with |6,]+1
+

If\’,( ,xm):f(xm).

Proof. Let us first calculate the values of ¢ —¢™¥**on the grid
2m
x =
" 2N+1
_izN in'( ) 2m izm inm

&N, _ei”(N+1)xm —e AN+l _ g AN+ = i GOIN+L _ giTM 52N+ — ().

Similarly
ein’Nxm _e—in'(N+1)xm =0.

Hence

If,(. ,xm):]N(. ,xm):f(xm).
This completes the proof.
2. In this section we consider additional acceleration of the rational-
trigonometric interpolation by polynomial correction method known as the
Krylov-Lanczos approach.

Let feC?'[-11]. By 4,(f) denote the jumps of f at the end points of the

interval

The polynomial correction method is based on the following representation of
the interpolated function

q-1
=>4 () By (x)+ F(x), )
k=0
where B, are 2-periodic Bernoulli polynomials
1
By () :— By (x J'Bkl ,J.Bk(x)dx:O,xe[—l,l]
-1

and function F is a 2-periodic and relatively smooth function on the real line
(F eci! (R)) with the discrete Fourier coefficients

- q_l
_ZAk (.f)Bk,n'
k=0
Approximation of F in (2) by the classical trigonometric interpolation leads to
the Krylov-Lanczos (KL-) interpolation
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Iy, (f.x)= :Z_;Ak (f)Bi (x)+1y (F.x)

and approximation of F by the rational-trigonometric interpolation leads to
rational-trigonometric-polynomial (rtp-) interpolation

15, (f.x)= :Z_;Ak (f)Bi (x)+15 (F.x)

with the errors ry (f,x) and r{ (f,x), respectively.

Theorem 2. Let feC?'[-11]. Then 1%, (f.x) is an interpolation of f
on the equidistant grid x, = % |m|< N for every sequence 6 with |0, =1
+
15, ( ,xm):f(xm), |m| <N.
Proof. In view of Theorem 1 and expansion (2) we get

—1

1, (F0) = S A (1) B (5)+ 15 (Fox,)

< &
- o

=» 4,(f)B(x, )+ F(x,,)=f(x,)-

=0

=~

This completes the proof.

The next results we need for further comparisons. Theorem 3 describes the
error of the KL-interpolation on the whole interval of interpolation
in the framework of L, -norm while Theorems 4 and 5 show the behavior of the

pointwise-error in the regions away from the singularities (x =+1).

Theorem 3. [4] Let f e Cq[— 1,1] and f(q) € AC[—I,I] for some q>1. Then
the following estimate holds

||r1\/,q(f,xj|L2 = O[N_q_;} N >,

Theorem 4. [4] Let g>1 be an even number, fqu”[—l,l] and
£ e AC[-1,1]. Then the following estimate holds as N —« and x| <1 is
fixed

rN,q(f,x)zO(N_q_l).

Theorem 5. /4] Let q=>1 be an odd number, feC*[-1,1] and
2 e AC[-1,1]. Then the following estimate holds as N o and x| <1 is
fixed

rvg(fox)=0(N12).
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3. Determination of parameter 6 is crucial for realization of the rational-
trigonometric interpolation. One general approach leads to Fourier-Pade
interpolation and is connected with the solution of the following system for
getting the values of 6,

52(0.7,)=0, || = N=-p+1,...N,
where the periodicity  property fn+k(2 N41) = f, of the discrete Fourier

coefficients is  taken into account. Theoretical investigation of such
interpolations will be carried out elsewhere.
Here we consider another choice of parameter 0

T .
9k29_k:1—ﬁk,k:1,...,p,rk >0,7; #7;,) #i 3)

and introduce theoretical estimates for the corresponding interpolations for a

smooth function f on [-1,1]. New parameters 7, can be determined by

different approaches. One approach leads to L,-minimal interpolation. This

idea is introduced and investigated in [3] for the Fourier-Pade approximations.
The first step towards L,-minimal interpolation is performed in [6] where the

case p=1 is investigated. The idea of this interpolation is determination of
unknown parameters 7, from the condition

1
g+
: op .
lim N "rN‘q (f,x)"Lz — minimum .

Paper [6] shows the solution of this problem for p=1 and 1<¢<6. Similarly

other cases can be investigated.
Another approach for determination of parameters 7, is described in [8]

where 7, are the roots (which are positive and distinct) of the Laguerre
polynomial L9 (x).

The rest of the paper is devoted to the derivation of the analogs of
Theorems 3, 4 and 5 for the rtp-interpolation for smooth functions on [-1,1]

where parameter @ is defined as in (3).
The following theorem shows the convergence rate of the rtp-interpolation
in the regions away from the singularities x =+1.

Theorem 6. Let f e C72P* [-11] and 1427 ¢ AC[-1,1] for some p.q>1
and parameters 0 are chosen as in (3). Then the following estimate holds as
N > and |x|<1 is fixed

rﬁq (fx) = O(N_q_zp_1 )
Proof. Expansion (2) shows that
iy (fx) =1 (F.x).

We get by the Abel transformation (see (1))

C(X)I}E‘q (f,X) — 8% (e’ Fn )(e—ian_ein(NH)x ) +6§N (e, Fn )(einNX_efin(NJrl)x ) +
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A CH (e,Fn—Fn))e'”u > (o7 (0.F,))e™
n=-N |n|=N+1
4)
where
D
X
¢ =4cos’ 71:1[(1+2c95 cos mx+ 952).

First we will estimate the last term in the right-hand side of (4). We need to

estimate J) (6np (6.F, ))for|n|> N . In view of definitions of 6%(6,c,), o¥(c,) and

their connection with 4% (c, ) we get (see also (3))

P ) P ]
(81 (0.F,)) = X (1) X () A (R,

s=0 k=0

where y, are the coefficients of polynomial

ﬁ(1+‘rs X)= zp:ys x’.
s=0

s=1
In view of the smoothness of F we get (by means of integration by parts and
from expansion (2))

R 1 1 +2p+ —inx
F, = z 4, (.f)Bm,n +mj.f(q 2 2)(x)e dx. 6)
m=g (irn) °
of1)

Taking into account that the last term in (6) is N — o and the well-

2p+2 °
ndt=prt

known estimate (see [4] for similar estimates)
1
k —
A(B,, )= O[n"”k“ ) n— oo

we obtain

q+2p+l
2pk-s+2 _ 1 o(1)
A"‘*‘P_S‘*'l (F” ) - z O[nm+2p—k—‘v+3 J+ nq+2p+2 » B> 0.
m=q

Substituting this into (5) we obtain

5, (31 (0,F, ) = Nl o(n ), > N, N o0
From here we conclude that the last term in the right-hand side of (4) is
o(N‘q‘zp‘l) as N > .
Now we will estimate the third term in the right-hand side of (4). We need
to estimate J) (65 (9, F,-F, )) for |n|< N . Similar to (5) we write

5)(07(0.F,~F,))= g(—l)“ %g(—l)k %Aif;f;if (F,-F). O

Discrete Fourier coefficient F, is convenient to estimate based on the identities

F" - ZF"*'S(ZNH) and l:ﬂn_Fn = Fn+s(2N+1)' (®)

S#WO

138



Applying expansion (6) we obtain for |n|< N

_ q+2p+1 0(1)
Fn 'Fn = z Am (.f)zBm,n+s(2N+l)+W’Ng)oo'
m=q s#0

Using the estimate (see [4] for similar estimates)

k —m—k—1
An{ Bm,n+s(2N+l)]:O(N )’ N —>o
s#0

we get

k—s - 1 0(1)
Aifpliﬁ?z (F" —F, ) = O(n2p—k—s+q+3 j+ nq+2p+2 s N>

Substituting this into (7) we obtain

5! (5{(9,5 —Fn)):ﬂ In|< NN >

Nq+2+2 ’
Hence, the third term in the right-hand side of (4) is o(N —a=2p-l ) as N > o.
Finally, we need to estimate the first two terms in the right-hand side of
(4). We need to estimate &7, (G,Fn) . Similar to (5) we write
= N s Vs % k Yi a2p-k-s [
o1 (0.5)- S 23 (o Zeait () ®
5=0 NS N

In view of (6) and (8) we have (see similar estimate in [4])

A’iN(Fn):O(#J, N>,

Therefore
2p—k-s -\ _ 1
Aiiﬁ—p—s (Fn) - O(Nq+2p—k—s+l J s N> oo
and
08 0f sk oo

which completes the proof.
Next theorem is analog of Theorem 3. We omit the proof as it mimics
the proof of similar theorem in [3].

Theorem 7. Let feC???[-L1] and plarzes) AC[-11]  for some
q,p 21 and parameter 0 chosen as in (3). Then the following estimate holds

||rz5,q (f,x)||L2 = O(Nq“/2 ) N>w.

4. In this section we compare the convergence of the KL and rtp interpo-
lations in the regions away from the singularities. Parameter 6 we take as in (3)

and as 7, we put the roots of the Laguerre polynomials L (x).

It is important to notice that theorems for rtp-interpolation require
additional smoothness from the approximated functions and in comparisons it
must be taken into account. If ¢ is the number of available jumps and p >0 is
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chosen such that the requirements of Theorem 6 are valid (e.g. when function is
infinitely differentiable) then rtp-interpolation is more precise (however
asymptotically) than the KL-interpolation which follows from comparison of
Theorems 4, 5 and 6. Also we will show that utilization of all available jumps is
not always reasonable and more accuracy can be achieved with less jumps in
combination with rational corrections.

Let feC'[-11] and ™" euc[-11], M=21. Let g be even
According to Theorems 4 and 6 if the values of p and ¢ satisfy the condition
g+2p=M then both theorems are valid and comparison of corresponding
approximations is legal. Let

f(x) = sin(ax —1)
where a is some parameter. We use the values @ =1,10,30 and in Table 1

calculate the values of [max ]|er’  (f ,x)| for N =512 and for different values
x€[-0.5,0.5 ’

of p and ¢ with condition g +2p=6.

Table 1. Values of max |r]{,’!q (f,x)| for N=512,q+2p=6,9=2,4 and 6 and

xe[-0.5,0.5]
f(x) = sin(ax—l)
qg=2 qg=4 q==6
p=2 p=1 p=0
a=1 2.0.10% 1.1-107! 4.6-107%
a=10 131078 6.9-107'8 3.0-1077
a=30 2.1-1077 1.0-1071 3.9-107

The table shows that for ¢ =1 the KL-interpolation S, ¢(f,x) is the best, for
a=10 and a =30 the rtp-interpolation S3,,(/,x) is the best. For a =30

the rtp-interpolation is much more accurate than KL-interpolation which uses
all available jumps.

Actually we came to the conclusion (not only based on this specific
example but also on the expansion (6) where the main terms include jumps

A,(f).4,(f),.. that not always utilization of all available jumps, by the KL-

interpolation, leads to the best approximation. When the values of jumps are
rapidly increasing then better accuracy can be achieved by utilization of smaller
number of jumps and appropriately chosenrational corrections.

Institute of Mathematics of NAS RA
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A. V. Poghosyan
On Convergence Acceleration of Trigonometric Interpolation

A method of convergence acceleration of the classical trigonometric interpolation
is considered, which leads to interpolation with rational functions with the unknown
parameter. Some convergence theorems regarding the special choice of this parameter
are presented.

U. 9. Mnpnujuits
Bruunitiwswhwljw hnnbtpynjjughugh qniquihnnipjub
wpwuqugdub dwuht

Mumutwuppynud £ bnwllniiwswhuljutn htnkpuynjjughwjh gniquuhnnipput
wpuqugiw vh Enutwl, nph wpyniupnid uinwugymu b nughntuy $niujghwtbpny
hpujwtwgynn hinbpuynjjughw® jupjws wthwjn yuwpudbnphg: Lipjujugynmud ku
qniquuhinnipjub pnpbdubp’ wyn wwpudtnph dh dwubugnp pinpmpjut hudwp:

A. B. Ilorocsu

06 YCKOPE€HUH CXOAUMOCTH TpI/IFOHOMeTpI/l‘leCKOﬁ HHTEePpIOJsAIUHA

PaccMaTpuBaeTCsl METOJ YCKOPEHHS CXOJUMOCTU TPUIOHOMETPHUYECKON UHTEPIIO-
JISIUM, KOTOPBII IPUBOJAUT K UHTEPIOJLILUY C PALMOHAIBHBIMU (QYHKIMAMH C HEU3BeE-
CTHBIM napameTpoM. IIpuBonsaTcst TeOpeMBbl CXOIUMMOCTH AJIsl OHOIO BbIOOpA 3TOro ma-
pamerpa.
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