ՀԱՅԱՍՏԱՆԻ	ዓኮያበኮሹ	፥ ፀበՒՆՆ	ъгъ עפ	ዓሀያኮህ	ԱԿԱԴԵՄԻԱ
НАЦИОНА	льная	АКАД	ЕМИЯ	НАУК	АРМЕНИИ
ΝΑΤΙΟΝΑΙ	ACADE	MY OF	SCIEN	CES OF	ARMENIA
доклады		ደԵԿበ	ՒՅՑՆԵՐ		REPORTS

Հшилпр Том Volume	112	2012	Nº 3
volume			

МЕХАНИКА

УДК 539.3

М. В. Белубекян, С. Р. Мартиросян

Дивергентная неустойчивость прямоугольной упругой пластины, обтекаемой сверхзвуковым потоком газа

(Представлено академиком С. А. Амбарцумяном 13/Х 2011)

Ключевые слова: устойчивость неконсервативных систем, упругая пластинка, дивергентная локализованная неустойчивость, сверхзвуковое обтекание.

Рассмотрение задач устойчивости тонких упругих пластинок, когда поведение пластинки жёстко связано с воздействием обтекающего её сверхзвукового потока газа, имеет важное прикладное и теоретическое значение. Вопрос об упругой устойчивости неизбежно возникает на этапе проектирования и конструирования любого летательного аппарата для обеспечения безопасности полета. А теоретические исследования этих задач позволяют выявить различные виды потери устойчивости – статической и динамической, обусловленные характером деформаций [1, 2]. В монографии [3] приведена обширная литература, посвящённая исследованию дивергентной и флаттерной неустойчивости.

В первых исследованиях колебаний и устойчивости консольной пластинки, обтекаемой сверхзвуковым потоком газа, были обнаружены потери устойчивости обоих видов: дивергентной и флаттерной [1, 4]. Оказалось, что значение критической скорости потока, приводящее к дивергентной неустойчивости, существенно меньше значения критической скорости потока, приводящей к флаттерной неустойчивости [1, 4].

Как известно [5], вдоль свободного края тонкой упругой полубесконечной пластины-полосы, совершающей изгибные колебания, может распространяться волна, обладающая свойствами волны "рэлеевского" типа в полубесконечном пространстве. По аналогии с изгибными локализованными колебаниями исследован эффект локализованной неустойчивости полубесконечной пластинки-полосы в окрестности свободного края, сжатой по полубесконечным шарнирно закрепленным кромкам [6]. В предлагаемой работе исследуется следующая аналогия – локализованная дивергентная неустойчивость, возникающая в окрестности свободного края полубесконечной пластины-полосы при обтекании её сверхзвуковым потоком газа. Показано, что при обтекании сверхзвуковым потоком газа вдоль полубесконечных шарнирно закрепленных кромок полубесконечной пластины-полосы в окрестности её свободного края возникает локализованная неустойчивость.

1. Постановка задачи. Рассмотрим тонкую упругую прямоугольную пластинку, которая в декартовой системе координат Oxyz занимает область $0 \le x \le a$, $0 \le y \le b$, $-h \le z \le h$. Декартова система координат Oxyz выбирается так, чтобы оси Ox и Oy лежали в плоскости невозмущённой пластинки, а ось Oz была перпендикулярна пластинке и направлена в сторону сверхзвукового потока газа, обтекающего пластинку с одной стороны в направлении оси Ox с невозмущенной скоростью V. Течение газа будем считать плоским и потенциальным.

Пусть кромка x = 0 пластинки свободна, кромка x = a жестко защемлена, а кромки y = 0 и y = b шарнирно закреплены.

Выясним условия, при которых наряду с невозмущенной формой равновесия (неизогнутая пластинка) возможна искривленная форма равновесия (изогнутая пластинка), когда изгиб пластинки обусловлен соответствующими аэродинамическими нагрузками.

В предположении справедливости гипотезы Кирхгофа и «поршневой теории» [7] дифференциальное уравнение изгиба пластинки описывается соотношением [1, 4]

$$D\left(\frac{\partial^4 w}{\partial x^4} + 2\frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4}\right) + a_0 \rho_0 V \frac{\partial w}{\partial x} = 0, \quad w = w(x, y).$$
(1.1)

Здесь w = w(x, y) – прогиб точек срединной поверхности пластинки; ρ_0 – плотность невозмущённого потока газа, a_0 – скорость звука в невозмущённой газовой среде; D – цилиндрическая жесткость на изгиб пластинки.

Граничные условия в принятых предположениях относительно способа закрепления кромок имеют вид

$$\frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2} = 0, \quad \frac{\partial}{\partial x} \left(\frac{\partial^2 w}{\partial x^2} + (2 - v) \frac{\partial^2 w}{\partial y^2} \right) = 0, \quad x = 0; \quad (1.2)$$

$$w = 0$$
, $\frac{\partial w}{\partial x} = 0$, $x = a$; (1.3)

$$w = 0$$
, $\frac{\partial^2 w}{\partial y^2} = 0$, $y = 0$, $y = b$, (1.4)

где *v* – коэффициент Пуассона.

Требуется установить, при каких значениях скорости потока газа V возникает дивергентная неустойчивость: невозмущенная форма равновесия пластинки перестаёт быть устойчивой, а изогнутая форма становится устойчивой. Иными словами, требуется установить, при каких значениях параметра V возможны нетривиальные решения дифференциального уравнения (1.1), удовлетворяющие граничным условиям (1.2) – (1.4). Общее решение уравнения (1.1), удовлетворяющее граничным условиям (1.4), ищем в виде

$$w(x, y) = \sum_{n=1}^{\infty} C_n \exp(\lambda_n px) \cdot \sin(\lambda_n y), \qquad \lambda_n = \pi n b^{-1}.$$
(1.5)

Подставляя выражение (1.5) в уравнение (1.1), получаем характеристическое уравнение

$$p^{4} - 2p^{2} + \alpha_{n}^{3}p + 1 = 0, \quad \alpha_{n}^{3} = a_{0}\rho_{0}VD^{-1}\lambda_{n}^{-3}, \qquad \alpha_{n}^{3} > 0.$$
 (1.6)

Исследуем поведение корней уравнения (1.6) в зависимости от параметров задачи (1.1) – (1.4).

Перепишем характеристическое уравнение (1.6) в удобном для исследования виде

$$(p^{2}-1)^{2} + \alpha_{n}^{3}p = 0, \quad \alpha_{n}^{3} = a_{0}\rho_{0}VD^{-1}\lambda_{n}^{-3}, \quad \alpha_{n}^{3} > 0.$$
 (1.7)

Очевидно, что характеристическое уравнение (1.7) имеет два отрицательных действительных корня $p_1 \prec 0$, $p_2 \prec 0$ и два комплексных корня

 $p_{3,4} = \alpha \pm i\beta$ с положительной вещественной частью $\alpha \succ 0$.

Найдем решение характеристического уравнения (1.6).

Нетрудно показать, что корни характеристического уравнения (1.7) определяются выражениями

$$p_{1,2} = -\frac{A}{4} \pm \sqrt{\frac{A^2}{16} - q_1 + \frac{\alpha_n^3}{A}}, \quad p_1 \prec 0, \quad p_2 \prec 0;$$
(1.8)

$$p_{3,4} = \frac{A}{4} \pm \sqrt{\frac{A^2}{16} - q_1 - \frac{\alpha_n^3}{A}} , \qquad p_{3,4} = \alpha \pm i\beta , \quad \alpha \succ 0.$$
(1.9)

Здесь

$$A = 2\sqrt{2(1+q_1)}, \quad q_1 \succ 1;$$
 (1.10)

q₁ – единственный действительный корень кубического уравнения

$$q^{3} + q^{2} - q - 1 - \frac{\alpha_{n}^{6}}{8} = 0.$$
 (1.11)

В самом деле, характеристическое уравнение (1.6), являясь алгебраическим уравнением четвертой степени, в соответствии с известным алгоритмом нахождения решения, предложенным Феррари [8], равносильно следующим двум квадратным уравнениям:

$$p^{2} + 0.5Ap + (q_{1} - \alpha_{n}^{3}A^{-1}) = 0, \qquad (1.12)$$

$$p^{2} - 0.5Ap + (q_{1} + \alpha_{n}^{3}A^{-1}) = 0.$$
(1.13)

Здесь A определяется выражением (2.5), а q_1 – действительный корень кубического уравнения (1.11).

Из представления уравнения (1.11) в виде

$$8 \cdot (1+q)^2 (q-1) = \alpha_n^6$$
 (1.14)

и положительности её дискриминанта $Q = \alpha_n^6 (\frac{1}{27} + \frac{\alpha_n^6}{256})$ следует, что при

условии $(q-1) \succ 0$ кубическое уравнение (1.11) имеет один действительный корень q_1 ($q_1 \succ 1$) и два комплексных корня. А при условии (q-1) $\prec 0$ уравнение (1.11) решения не имеет. Тогда в силу условий $A = 2\sqrt{2(1+q_1)} \succ 4$ и $\frac{A^2}{16} - q_1 + \frac{\alpha_n^6}{A} \succ 0$, $\frac{A^2}{16} - q_1 - \frac{\alpha_n^3}{A} \prec 0$ характеристическое уравнение (1.6) имеет два отрицательных действительных корня p_1 , p_2 и два комплексных корня $p_{3,4} = \alpha \pm i\beta$ с положительной вещественной частью α , удовлетворяющих квадратным уравнениям (1.12), (1.13) соответственно.

2. Общее решение дифференциального уравнения (1.1) вида (1.5) в соответствии с вышеизложенным можно представить в виде

$$w(x, y) = \sum_{n=1}^{\infty} \left\{ C_{n1} \exp(\lambda_n p_1 x) + C_{n2} \exp(\lambda_n p_2 x) + \exp(\lambda_n \alpha x) \cdot \left(C_{n3} \cos(\lambda_n \beta x) + C_{n4} \sin(\lambda_n \beta x) \right) \right\} \cdot \sin(\lambda_n y),$$

$$\lambda_n = \pi n b^{-1}, \qquad (2.1)$$

где

$$p_{1,2} = -\frac{\sqrt{2}}{2}\sqrt{q_1 + 1} \pm \sqrt{\sqrt{q_1^2 - 1} - \frac{q_1 - 1}{2}}, \quad p_1 \prec 0, \ p_2 \prec 0;$$
(2.2)

$$p_{3,4} = \frac{\sqrt{2}}{2}\sqrt{q_1 + 1} \pm i \cdot \sqrt{\sqrt{q_1^2 - 1} + \frac{q_1 - 1}{2}}, \qquad (2.3)$$

в соответствии с выражениями (1.8)–(1.11); C_{nk} , k = 1, 2, 3, 4 – произвольные постоянные:

$$\sum_{k=1}^4 C_{nk}^2 \neq 0.$$

Подставляя выражение (2.1) в граничные условия (1.2) и (1.3), в соответствии с (2.2) и (2.5) получаем однородную систему алгебраических уравнений относительно произвольных постоянных C_{nk} . Далее, приравнивая нулю определитель полученной системы, получаем дисперсионное уравнение относительно q_1 , откуда находятся соответствующие различным значениям коэффициента Пуассона v значения q_1 и в силу соотношений (1.6) и (1.14) критические значения скорости потока V_{cr} .

3. Локализованная неустойчивость пластины-полосы. Исследуем потерю статической устойчивости прямоугольной пластинки в предположении $a \gg b$. При этом условии для достаточно больших a ($a \rightarrow \infty$) рассматриваемую прямоугольную пластинку можно считать пластиной-полосой.

Требуется найти решение уравнения (1.1), удовлетворяющее граничным условиям (1.2), (1.4) и условию затухания на бесконечности [5, 6]

$$\lim w = 0. \tag{3.1}$$

Такой подход аналогичен методу решения задач поверхностных волн, локализованных изгибных колебаний и локализованной неустойчивости [5, 6].

В соответствии с этим подходом общее решение (2.1) перепишется в виде

$$w(x, y) = \sum_{n=1}^{\infty} (C_{n1} \exp(\lambda_n p_1 x) + C_{n2} \exp(\lambda_n p_2 x)) \cdot \sin(\lambda_n y), \ \lambda_n = \pi n b^{-1}, \qquad (3.2)$$

где p_1 и p_2 определены выражениями (2.2); C_{n1} , C_{n2} ($C_{n1}^2 + C_{n2}^2 \neq 0$) – произвольные постоянные.

При этом решение вида (3.2) должно удовлетворять граничным условиям (1.2), соответствующим отсутствию на свободной кромке x = 0 изгибающего момента и перерезывающей силы.

Подставляя выражение (3.2) в граничные условия (1.2), получаем следующую однородную систему алгебраических уравнений относительно произвольных постоянных C_{n1} , C_{n2} ($C_{n1}^2 + C_{n2}^2 \neq 0$):

$$\begin{cases} (p_1^2 - v)C_{n1} + (p_2^2 - v)C_{n2} = 0, \\ p_1(p_1^2 - 2 + v)C_{n1} + p_2(p_2^2 - 2 + v)C_{n2} = 0. \end{cases}$$
(3.3)

Приравнивая нулю определитель системы уравнений (3.3), получим дисперсионное уравнение

$$K(p_1, p_2) = (p_2 - p_1) \left[(p_1 p_2 + 1)^2 - \nu (p_1 + p_2)^2 - (\nu - 1)^2 \right] = 0, \quad (3.4)$$

где p_1 и p_2 – действительные корни характеристического уравнения (1.6), определяемые выражениями (2.2).

В соответствии с соотношениями (2.2) уравнение (3.4) при $\alpha_n^3 \succ 0$ тождественно уравнению

$$K_{1}(p_{1}, p_{2}) = (p_{1}p_{2}+1)^{2} - \nu(p_{1}+p_{2})^{2} - (\nu-1)^{2} = 0.$$
(3.5)

Подставляя выражения (2.2) в соотношение (3.5), получаем уравнение

$$L(q_1) = 2(q_1+1) \cdot (q_1 - \sqrt{q_1^2 - 1} - \nu) - (1 - \nu)^2 = 0, \qquad (3.6)$$

откуда легко находятся значения q_1 , соответствующие различным значениям коэффициента Пуассона v. Далее, подставляя найденные значения q_1 в соотношение (1.14), для различных значений коэффициента Пуассона v в соответствии с обозначением (1.7), получаем соответствующие значения критической скорости потока $V_{\kappa p}$. При значениях $V \ge V_{\kappa p}$ в окрестности свободного края x = 0 пластины-полосы наблюдается явление локализованной неустойчивости.

В таблице для нескольких значений коэффициента Пуассона v приведены соответствующие значения критической скорости потока V_{kp} .

V	0	0.125	0.25	0.375	0.5
$V_{\kappa p} \cdot (a_0 \rho_0 b^3) (\pi^3 n^3 D)^{-1}$	80.0	10.6	5.6	3.9	2.5

Из данных, приведенных в таблице, видно, что значение критической скорости $V_{\kappa p}$ потока меньше в пластинах-полосах из материалов с бо́льшим коэффициентом Пуассона.

Заметим, что в первых исследованиях устойчивости консольно закрепленной пластины-полосы ($0 \le x \le a$, $-\infty \le y \le \infty$) в предположении движения пластины в сверхзвуковом потоке газа в направлении от защемленного края x = 0 к свободному x = a был обнаружен эффект дивергенции и найдена критическая скорость: $V_{\kappa p. \partial ue.} \approx 6.33D(a_0\rho_0a^3)^{-1}$ [4]. Позже были получены приближенные значения критической скорости дивергенции и флаттера

$$(V_{\kappa p.\partial u \theta.} \approx 6.33 D (a_0 \rho_0 a^3)^{-1}, V_{\kappa p.\phi n.} \approx 122.7 D (a_0 \rho_0 a^3)^{-1})$$

консольно закрепленной пластины-полосы в условии обтекания её сверхзвуковым потоком газа в направлении от свободного края x = 0 к защемленному x = a [1]. При этом в отличие от критической скорости локализованной неустойчивости критические скорости дивергенции и флаттера не зависят от коэффициента Пуассона.

4. Пусть кромка x = 0 пластины-полосы закреплена одним из следующих способов: жесткой заделки, плавающей заделки и шарнирного закрепления. Исследуем возможность возникновения явления локализованной неустойчивости в окрестности кромки x = 0 при этих способах её закрепления.

Легко показать, что в случаях, когда кромка x = 0 жестко или плавающе заделана или же шарнирно закреплена, в окрестности закрепленной кромки x = 0 обтекаемой пластины-полосы явление локализованной неустойчивости не наблюдается.

Подставляя общее решение уравнения (1.1) в виде выражения (3.2) в граничные условия

$$w = 0, \ \frac{\partial w}{\partial x} = 0, \ x = 0; \ \frac{\partial w}{\partial x} = 0, \ \frac{\partial^3 w}{\partial x^3} = 0, \ x = 0;$$
$$w = 0, \ \frac{\partial^2 w}{\partial x^2} = 0, \ x = 0,$$
(4.1)

соответствующие этим способам закрепления соответственно, получаем однородные системы алгебраических уравнений относительно произвольных постоянных C_{n1} , C_{n2} ($C_{n1}^2 + C_{n2}^2 \neq 0$). Приравнивая нулю определители этих систем, получаем дисперсионные уравнения, описываемые, соответственно, следующими соотношениями:

$$p_2 - p_1 = 0$$
, $p_1 p_2 (p_2^2 - p_1^2) = 0$, $p_2^2 - p_1^2 = 0$. (4.2)

Согласно выражениям (2.2) следует, что системы уравнений, соответ-

ствующие этим способам закрепления, имеют только тривиальное решение: $C_{n1} = C_{n2} = 0$. Следовательно, при вышеуказанных способах закрепления кромки x = 0 пластины-полосы явление локализованной неустойчивости в её окрестности не наблюдается.

Таким образом, при обтекании сверхзвуковым потоком газа вдоль полубесконечных шарнирно закрепленных кромок полубесконечной пластины-полосы в окрестности свободной кромки x = 0 наблюдается явление локализованной неустойчивости.

Работа выполнена в рамках программы A^2 -NET-TEAM Advanced Aircraft Network for Theoretical Experimental Aeroelastic Modelling

Институт механики НАН РА

М. В. Белубекян, С. Р. Мартиросян

Дивергентная неустойчивость прямоугольной упругой пластины, обтекаемой сверхзвуковым потоком газа

Исследуется явление дивергентной локализованной неустойчивости, возникающее в окрестности свободной кромки прямоугольной пластинки, обтекаемой сверхзвуковым потоком газа.

Найдено значение критической скорости обтекающего потока газа, при достижении которого наблюдается локализованная неустойчивость.

Մ. Վ Բելուբեկյան , Ս. Ռ. Մարտիրոսյան

Ուղղանկյուն առաձգական սալի դիվերգենտ անկայունությունը գազի գերձայնային հոսքում

Ուսումնասիրված է գերձայնային գազի հոսքում շրջհոսող առաձգական սալի դիվերգենտ անկայունությունը, որը առաջանում է սալի ազատ եզրի միջակայքում։ Գտնված է շրջհոսող հոսքի արագության կրիտիկական արժեքը, որի դեպքում տեղի ունի դիվերգենտ անկայունությունը։

M. V. Belubekyan, S. R. Martirosyan

The Divergence Instability of the Elastic Rectangular Plate Streamlined by Supersonic Gas Flow

The divergence localized instability of a thin rectangular plate model in a supersonic gas flow is analysed

The critical velocity of the gas flow is found, which reduces to the divergence localized instability arising in the vicinity of free edge of a plate.

Литература

- 1. Болотин В.В. Неконсервативные задачи теории упругой устойчивости. М. Наука. 1961. 329 с.
- 2. Пановко Я.Г., Губанова И.И. Устойчивость и колебания упругих систем. М. Наука. 1987. 352 с.
- 3. Алгазин С.Д., Кийко И.А. Флаттер пластин и оболочек. М. Наука. 2006. 247 с.
- 4. Мовчан А.А.- Изв. АН СССР. ПММ. 1956. Т. 20. С. 211-212.
- 5. Коненков Ю.К. Акуст. журн. 1960. Т. 6. № 1. С. 124-126.
- 6. Белубекян М.В. В сб.: Вопросы оптимального управления, устойчивости и прочности. Ереван. Изд-во ЕГУ. 1997. С. 95-99.
- 7. Ильюшин А.А. ПММ. 1956. Т. 20. № 6. С. 733-755.
- 8. Корн Г., Корн Т. Справочник по математике. М. Наука. 1978. 832 с.