2UB8UUSUULh @PSNPESNPLLELE UQQUSPUL UUYUTGURU
HANOUWOHAIUBHAA AKAJEMMHUSA HAYK APMEHUHU
NATIONAL ACADEMY OF SCIENCES OF ARMENIA

HOKJIAIB 9BUNP3BLEL REPORTS
ol 112 2012 Ne3
Volume

INFORMATICS
VIK 519.688

G. E. Harutyunyan, academician S. K. Shoukourian,
foreign member of NAS RA Y. A. Zorian

Fault and Test Algorithm Periodicity Hypothesis in Memory
Devices and Its Application to Memory BIST Processor
Architecture

(Submitted 4/TV 2012)

Keywords: fault periodicity, March test, symmetry, memory BIST.

1. Introduction. Nowadays memory built-in self-test (BIST) controllers
come either with hardwired standard test algorithms or with programmability
(see [1-3]). In the case of hardwired BIST, these test algorithms should be gene-
ral in nature and are not necessarily optimal for a novel or proprietary memory
design.The user cannot modify or add its own test algorithms to hardwired
BIST. The programmable BIST approaches use an architecture that usually re-
quires an externally accessible register (Test Algorithm Register) of predefined
format for storing a micro-program that will perform a given march test algo-
rithm. Actually, the programmable BIST controller provides enough flexibility
for test algorithm definition. At the same time, the test algorithm is composed of
special test mechanisms (test operations, background patterns and addressing
methods) which are usually hardwired in the BIST. In this context, the program-
mability of BIST means that only the existing test mechanisms can be used
when building a test algorithm. This limitation specifically implies the flexi-
bility of testing process and test time. In some cases this limitation can even
lead to impossibility of programming the required test algorithm. Afterwards,
solutions with programmability of separate test mechanisms were also proposed
(e.g., [1,3]). However, all the mentioned above solutions do not have a common
backbone which will allow considering all these different issues within a unified
infrastructure.

In this paper, a new approach for building the mentioned infrastructure is
proposed. It is based on a notion of periodicity and regularity for faults and test
algorithms, and their interdependence. This is considered as a basis for building

229

a generic BIST architecture. Some explanations are adduced below to clarify the
idea.
We consider the known classification of faults, basing on the following
factors:
e Complexity of fault sensitization, i.e., the number of operations required
to activate the fault.
e Number of cells that the fault involves.

Following this classification, the faults can be grouped into different clas-
ses. The number of classes and faults inside them increase with the technology
shrinking (see [4]). We have done a systematic investigation of evolution for
these fault classes and their detection algorithms, covering a broad range of
manufacturing technologies from 90nm to 28nm. Results of this investigation
led to determination of a hypothesis that some regularity and periodicity rules
exist for that evolution. Moreover, the known property of symmetry (see [5]),
which means that each fault usually has its twin, was developed further and a
special symmetry measure was introduced to be used in test mechanisms (see
[6]). This brought to a representation of the mentioned property in a form of a
rule also.

It is proposed to describe all these rules in a form of a special fault periodic
table (FPT). Each column of FPT corresponds to some functionality of a test
mechanism, while each row of FPT corresponds to a fault family determined by
the complexity of fault sensitization. Fault symmetry is also taken into account
in FPT. An intersection of a given row and column determines a test algorithm
for detection of the given fault family.

This table not only allows building of a generic BIST architecture that
supports programmability of test algorithms without limitations mentioned
above. It also allows detection of new faults which arise in the field after ma-
nufacturing within the same BIST. If these faults can be predicted beforehand
then due to regularity of the FPT it is possible to include them into the range of
faults covered by the built BIST architecture and to detect them further via
programmability.

Another direction of FPT usage is the following. There can be faults that
are not realistic in the current technology but can be predicted as realistic in the
future technologies. These faults can be also reflected in the BIST architecture.
This becomes actual in cases when it is planned to implement a given design,
including the BIST design, on a new technology basis without making changes.

The dependencies and regularities in the FPT do not completely imply
from the known results. During the investigation, several unknown before peri-
odical dependencies and regularities, as well as unknown use of symmetry in
test mechanisms were found, justified and included in the FPT.

Based on discovered fault and test mechanism periodicity and regularity
we have defined a new generic architecture of BIST. It has two levels of BIST
programmability: first level is test mechanism programmability and second le-
vel is test algorithm programmability. The proposed BIST architecture has the
following advantages:

¢ Automatic generation of efficient test algorithms based on FPT;

230

e Complete programmability of test algorithms and test mechanisms;

¢ Flexible customization to the specific application and a possibility of
finding the optimal trade-off between the area and BIST functionality.

2. Definitions and notations. The definition of the fault primitive concept
(FP=<S/F/R>), used to define memory faults, can be found in [7-9]. In the
notation of FP, S is the sequence of test operations required for fault sensi-
tization (e.g., OW1, IWORO, etc.), Fe {0, 1} is the observed memory behavior
that deviates from the expected one. Re {0, 1, -} is the result of a read operation
applied to the victim cell, in case if the last operation of S is a Read operation.
“-““is used when the last operation of S is Write operation.

The difference between static and dynamic faults is determined by #S, the
number of operations in S. Depending on #S, the memory faults can be
classified into static or dynamic faults. Static faults are the faults sensitized by
performing at most one operation (#S< 1). Dynamic faults are the faults that can
only be sensitized by performing more than one operation sequentially (#S>1).
If #S=2, the fault class will be named class of two-operation dynamic faults and,
in general, if #S=n, then it will be named class of n-operation dynamic faults.

The classification of faults can be done not only with respect to #S, but
also with respect to #C, the number of different cells the fault involves.
Depending on #C, a fault can be classified into single-cell faults involving a
single cell (#C=1), two-cell (coupling) faults that involve two cells (#C=2) and,
in general, n-cell faults involving n cells (#C=n).

In the sequel, we will consider only the faults satisfying the following
conditions: #C=1 or #C=2, #5>0. Several works (see [10,11]) show that these
faults are the most realistic (probable) faults in nowadays memories.

Below we propose a new and simple notation to describe the faults. It is

obtained from FP=<S/F/R> in the following way:

e Separate from S the cell initial value and the sensitizing sequence of test
operations (ssto). For example, if S=1WORQO, then the initial value is 1
and ssto is WORO.

¢ Do not use F and R since they can be easily obtained from S.

Notation 1. (x,, S) denotes a single-cell fault, where S=OP,;D, ..., OP,D,,
n=0, is a ssto applied to the victim cell, when the victim cell value is x,. After
fault sensitization the victim cell value becomes ~D,, if S # & otherwise it
becomes ~x,.

Notation 2. (x, x, S,) denotes a two-cell (coupling) fault, where
S,=0OP,D,, ..., OP,D,, n=0, is a ssto applied to the victim cell, when the victim
cell value is x, and the aggressor cell value is x,. After fault sensitization the
victim cell value becomes ~D,, if S + & otherwise it becomes ~ x,.

Notation 3. (x,, S, x,) denotes a two-cell (coupling) fault, where
S,=OP,D,, ..., OP,D,, n=0, is a ssto applied to the aggressor cell, when the
aggressor cell value is x, and the victim cell value is x,. After fault sensitization
the victim cell value becomes ~ x,,

231

Definition 1. FG(x, S) is a fault group that contains all faults that are
sensitized by ssto S applied to a cell containing value x: FG(x, S)={(x, S), (y, x,
S), (x, S, ¥)}, x, ye{0, 1}, S=OP,D,, ..., OP,D,, n>0.

In case of two-cell faults, the relation (lower/higher address in the memory)
between the aggressor cell “a” and the victim cell “v” is essential, since a test
algorithm can detect the same coupling fault if a<v and not detect if a>v. When
we need to indicate the aggressor and victim cell relations for a fault, we will
denote it by a<v or a>v. For example, (0, W1, 1),,.

A March test algorithm M is a test algorithm with a finite number of March
elements M=M;; M,; ...; My (see [5]), where each March element M; consists of
an addressing order A; and a finite number of Read/Write operations M; = A; (O,
Dy, ..., OuDn):

e Ael{l, [0, §} - addressing order: [| - ascending, [- descending, g -

arbitrary;
* Oje (R, W} - test operations: R — Read, W — Write;
¢ D;- background pattern.

Definition 2. F,=(x;, {OP;Dy;, ..., OP; Di}), Fo-=(x5, {OP,D»y, ...,
OP31oDai2).

Fs=(y1, x;, {OP Dy, ..., OP1Diw }), Fs=(y2, X2, {OP3;Dyy, ..., OPyoDoia }).
Fs=(yi, {OP,Dyy, ..., OP1;u Dy }, X1), Fs=(y2, {OP2 Dy, ..., OPp;Dopr }, X5).

A pair of faults F, and F, (F; and F,, Fs and Fy) is called a pair of sym-
metric faults (or symmetric faults) and denoted by F,«¥F, (respectively, F3«¥,,
Fs«¥p), if it satisfies the following conditions:

* k;=k,, X;=~ X5, y1=~ y» (“~ " means opposite value);
e OP;=0P,, ..., OP;;;=0Py, and D;;=~ D», ..., Dy =~ Dy.
For example, (0, &)«£1, &), (0, 1, WOR0)<X1, 0, WIR]1).

We can denote also FG(x, S)«FG(~ x, ~ S) and call them as a pair of sym-
metric fault groups (or symmetric fault groups). This means that:

VFe FG(x, S), 3 Ge FG(~ x, ~ S), that F<4G and VFe FG(~ x, ~ S), 3 Ge FG(x,
S), that F<$.

Definition 3. A pair of March elements M;=A;(0;;D;,, ..., O1,;D,) and
M>=A3(031D;y, ..., O2,2D5,,) is called a pair of symmetric March elements and
denoted by M; <M, if it satisfies the following conditions:

® n;=n,and OP;;=0P;,, ..., OP;,;=0P;,,;
® (D;;=Dyj, ..., Diy=Day2) OR (Djj=~Dyy, ..., Djjg=~Dayo).

Definition 4. March test M=M;; M,; ..., M, is called symmetric if it
satisfies one of the following conditions:

Condition A. March test M consists only of pairs of symmetric March ele-
ments.

Condition B. M;={WD,) and M ,:Mz,' ...; My satisfies Condition A.
Condition C. Mi=(RD,) and M ,:MI; ..., My_; satisfies Condition A.

232

Condition D. M;=J{WD;), Mi=J(RDy) and M =M,;...; M., satisfies

Condition A.
Four symmetric March tests are presented below. Each of them satisfies
one of the conditions described in Definition 4.
(WO, RO); (W1, R1) - satisfies Condition A.
$(WO0); [I(RO, W1); [I(R1, WO) (MATS+ [5]) - satisfies Condition B.

0(WO, RO, W1); O(W1, R1, W0); {(RO) - satisfies Condition C.

two); Tro, WD); T(R1, W0); L(RO, W1); U(R1, WO0); $(RO) (March C-

[5]) - satisfies Condition D.

Definition 5. A March test is called partial-symmetric if it is not a sym-
metric March test but contains at least one pair of symmetric March elements.
For example, well-known March B test algorithm [5] is a partial-symmetric

March test: March B: J(W0); (RO, W1, RI1, WO, RO, W1); MRI1, WO, WI);

YR1, Wo, W1, W0); YRO, W1, W0).

3. Fault and test algorithm periodicity. To study the possible regularities
in memory faults and test algorithms, we have investigated their evolution
starting from 90nm to 45nm technology nodes. The investigations show that
every new technology brings new and more complex faults. In its turn test
algorithms also become more complex. The main regularities that we have
noticed during our investigations are introduced below.

Regularity 1. Newly discovered faults have similar behavior as the known
faults. For example, the same notation is usually used for description of known
and new faults.

Regularity 2. For detection of a new fault, a new test algorithm is usually
constructed/extended from an existing test algorithm. For example, March test
ﬂ(WO, WO, RO); ﬂ(Wl, R1, R1) is constructed from March test ﬂ(WO, RO);
(W1, R1).

Regularity 3. Each fault has its twin fault (e.g., Stuck-At-0 and Stuck-At-
1). In other words, for each fault F there is a fault G, that F<&G (symmetric
Sfaults).

Regularity 4. Symmetric faults are usually detected by symmetric March
tests. For example, the pair (0, R0O) and (1, R1) is detected by symmetric March
test (W0, RO, RO); T(W1, R1, R1).

During investigation of fault and test algorithm regularity we have noticed
that there is a periodicity in evolution of faults and test algorithms.

Fault periodicity hypothesis. Memory faults are evolved in periodic way.
This means that the new faults are the periodic extensions of the existing faults.

Fault families. Based on the length of the ssto the faults can be divided in-
to fault families. All faults that are sensitized by ssto of length k are from Fy-
family. For example, (0, @)e FF,, (0, 1, WIRIWO0)e FF;, (1, WORORORO, 1) €
F F,.

FF,={FG(0, ©), FG(1, @)}, FF,={FG(0, W0), FG(1, W1), FG(0, W1), FG(1,
WO0), FG(0, R0O), FG(1, R1)}.
233

Test algorithm periodicity hypothesis. Test algorithms are evolved in
periodic way. This means that the new test algorithms are the periodic
extensions of the existing test algorithms.

Let us compare March C- and March MSS1. March C- is a minimal March
test for detection of all traditional faults, while March MSS1 is a minimal
March test for detection of all static faults. Note that static faults are superset of
traditional faults.

March C-: $(WO0); T(RO, W1); T(R1, W0); 4RO, W1); J(R1, WO0); {(RO)
March MSS1 [12]: $(W0); (RO, RO, W1, W1); T(R1, R1, W0, W0); J(RO, RO,
w1, Wh); J(R1, R1, WO, WO0); J(RO)

Both March tests has the same structure with a difference that Write and
Read operations of 2“d, 3rd, 4™ and 5™ March elements in March MSS1 are
doubled. This means that March MSS1 can be easily extended from March C-.

In memories the faults usually occur as pairs of symmetric faults (see
Regularity 3). Since the symmetric faults are usually detected by symmetric
March tests (see Regularity 4) we have developed a March test template to
construct symmetric March tests. The template allows obtaining March tests
without using time consuming March test generation tools.

March test template. Let us assume that S is the sequence of test
operations, i.e., S=OP\D, ..., OPDy, k=0 and xe {0, 1}. March test template
MTT(x, S) has the following structure: ﬂ(W(~ Dy)); ﬂ([R(~ Dyl, [IWX)], S);
M(ROY], [W=x)1 ~S) UIRE-DYL, W)L S); URMDOL [W-x)], ~S);
U(R(~ Dy)), where:

¢ ~S=0P|(~Dy), ..., OP«(~Dy), if k> 1. ~ S=@, if S=.

e [W(x)] and [W(~x)] are absent, if S # & and x=~ D, otherwise they are
present;

e [R(DY] and [R(~Dy)] are absent, if S # &, x=~ D,, OP,=R, otherwise
they are present;

e [If S=O, then consider Dy=x.

All March tests obtained by MTT are symmetric. This is true since all the

March tests obtained by MTT satisfy the Condition D of Definition 4.

Theorem 1. The March test obtained by MTT(x, S) detects all faults from
FG(x, S) and FG(~x, ~S).

Proof. Let us show that March test obtained by MTT detects the conside-
red faults. There can be 4 different cases depending on values x and S:

Case A: S=0, x=V. MTA=T(W(~ x)); T(R(~ x), W(x)); T(R(x), W(~x));
URx), Weo); R, W= x)); YR~ x)).

Case B: S=OP,D,, ..., OPD,, k> 1, x=D,. MTB=(W(~x)); T(R(~x),
W), 8 TRK), Wx), ~8); dR=%, Wx), $); UR®, W=x), ~S);
UR(=x)).

Case C: S=OP,Dy, ..., OP,D,, k> 1, x=~ Dy and OP,=W. MTC=T(W(x));
TRx), 9); TR(~x), ~ S): bR (x). 8); bR(~x), ~ S); UR(x)).

234

Case D: S=OP,D,, ..., OP,D,, k> I, x=~D, and OP,=R. MTD=T(W(x));
fi(s); M~); 4(S); U~ 9); bR(x)).

Table 1 shows the faults and the corresponding operations of March tests
for sensitizing and detecting them for Case A. In the table, MT;; denotes i
component of i March element in March test MT, i>1, j> 1. For example,
MTA; | means the first component (i.e., operation R(x)) of the third March
element in March test MTA. It is easy to construct such tables for other cases
(Cases B, C and D) as well.

March tests for detection of multiple fault groups. In order to construct
a March test for detection of n pairs of symmetric fault groups FG(x,
SDFG(~ xq, ~ S1), FG(X,, S5)«FG(~ Xy, ~S»), ..., FG(X,, S)FG(~ X,, ~ Sy),
the following steps should be done:

Step 1. Construct a combined ssto CS which application to a cell con-
tainning value x will sensitize all the considered faults. For example, CS=S,,
W(x,), S, ..., W(X,), S, applied to a cell containing value x=x;.

Step 2. Obtain March test M by MTT(x, CS) that will detect all the con-
sidered faults.

March tests for detection of fault families. Let us construct March test
MT, for detection of all faults from Fy-family. Since FF;={FG(0, &), FG(1, @)},

then MT=MTT(0, @)=0(W0); T(RO, W1); T(R1, W0); (RO, W1); L(R1, WO);
{$(RO). This is the well-known March C- test algorithm which is the minimal

March test for detection of all traditional faults.

Now let us construct March test MT, for detection of all faults from FF;.
FF,={FG(0, W1), FG(1, W0), FG(1, W1), FG(0, W0), FG(1, R1), FG(0, R0)}.
To construct the combined ssto, the following cases should be considered: W1
should be applied to a cell containing value 0, W1 should be applied to a cell
containing value 1, R1 should be applied to a cell containing value 1.

Table 1.Case A. Fault sensitization and detection

Fault Fault Sensitization | Detection Fault Fault Sensitization| Detection
Group Group
(x, D) MTA,, MTA;, (~x,9) MTA,, MTA,,
(X, X, Dac| MTA,, MTAs, (X, ~X, Dacy | MTA,, MTA,,
(X, X, D)sv| MTA,, MTA;, (X, ~X, D)y | MTA,, MTAy,
(~x, %, (~x, ~X,
D)es MTA;, MTA;, Docs MTA;, MTA,,
(~x, %, (~x, ~X,
MTA. MTA FG(~ MTA MTA.
FG(Xa ®) Z)a>v > >! Gé) x Z)a>v b >!
(X, D, Xaev| MTA4, MTAs;, (=X, D, X)aey | MTA;z, MTA;,
(X, D, X)asy| MTA,, MTA;, (=X, D, Xy | MTAs, MTAs,
*x 2, MTA,, | MTA,, =% 2, MTA;, | MTA,,
- x)a\<v - x)a\<v
*x 2, MTA;, | MTA,, X2 vTA,, | MTA,
- x)a\>v - x)a\>v

235

The combined ssto is WIWI1R1, that should be applied to a cell containing
value 0. MT;=MTT(0, WIWIRD)=(WO0); (RO, W1, W1, RI); T(R1, WO,

W0, R0); J(RO, W1, W1, R1); J(R1, WO, WO, RO); {(RO). This is the well-

known March MSS [13] test algorithm which is the minimal March test for
detection of all static faults.

Symmetry measure. In [6], a new method of symmetry measurement for
March test algorithms is introduced. The dependency between symmetry mea-
sure and BIST optimization range is discussed. Based on the proposed metric
and experiments, it is stated that the higher symmetry of a test algorithm brings
to a greater BIST area saving.

In [14], an efficient test algorithm is generated by a new method that is suf-
ficiently general and efficient to generate symmetric March test algorithms for
different combinations of static and dynamic faults. The method is based on the
observation that almost all known minimal or efficient March test algorithms
are symmetric.

4. Fault Periodic Table. Since we have already stated about fault peri-
odicity and fault families, we have tried to introduce the faults by a Fault
Periodic Table (FPT) (see Table 2). In the table #C is the number of different
cells the fault involves. Though we have restricted #C<2, the FPT can be
extended also for cases #C>2. “SCF” stands for single-cell fault, TCFv—two-cell
fault where ssto is applied to the victim cell and TCFa—two-cell fault where ssto
is applied to the aggressor cell.

FPT allows studying and remembering the properties of a large number of
faults in a simpler way. In FPT the locations of unknown/not discovered faults
are left blank. Usually it becomes possible to predict them beforehand based on
the properties of the existing faults.

Table 2. Fault Periodic Table (FPT)

Fault Fault Group #C=1 #C=2
Family SCF TCFv TCFv TCFa TCFa
rp. [FGO.2) 0.9) 0,0, |1,0,2 0,200 [0, 1)
* rc, 2 |a,9 1,1,2 |0,1,2 |[10aD 1,90
FG(0, WO) [(0, WO) _ [(0, 0, WO) (1,0, WO) |(0, WO, 0) |(0, WO, 1)
FG(I, WD) [(LWD) (I, L WI) [0, 1, WD) |(I, WL, 1) [(1, W1, 0)
pp. [FGO.WD [O. WD [(0.0.WD [(1.0.WD [0.WL.0) [0.WL D
' [FG(1,W0) [(1, W0) [(1, 1, W0) [(0,1,W0) |(1, W0, 1) |(1, WO, 0)
FG(0, RO) |(0, RO) (0,0,R0) |(1,0,R0) |(0,R0,0) |(0,RO, 1)
FG(I,R1) |(1,R1) (1, ,R) |0, 1,R) |[(ILRL,1) |(L,R1,0)
FG(0, (0,0, 1,0, (0, WOWO, [(0, WOWO,
wowo) | O VYOWO Iwowoy [wowoy |0) 1)
FG(1, a1, o, 1, (1, WIWL, (1, WIWT,
o IWIWD GWIWD \Wiwny lwiwn |1 0)
2 [FG(, . wown |©0 1,0, (0, WOWT1, [(0, WOWT,
WOW1) ’ WOW1) |[WOW1) |0) 1
FG(1, a, 1, o, 1, (1, WIWO, [(1, WIWO,
wiwoy |PVIWO iwoy lwiwoy (D 0)

236

5. Conclusions. Basing on a systematic investigation of faults and test
algorithms during their evolution a periodicity and regularity of faults is dis-
covered. A hypothesis on fault and test algorithm periodicity and their interde-
pendence is proposed. According to this, Fault Periodic Table (FPT) and March
test template (MTT) are created to reflect formally their interdependence. FPT
allows to consider any large number of faults in one table and MTT allows to
obtain March tests without March test generation tools. It is justified that the
proposed MTT leads to effective test algorithms.

Synopsys

G. E. Harutyunyan, academician S. K. Shoukourian,
foreign member of NAS RA Y. A. Zorian

Fault and Test Algorithm Periodicity Hypothesis in Memory Devices
and Its Application to Memory BIST Processor Architecture

This paper introduces a new approach for building a generic built-in self-test
(BIST) processor architecture for memory testing that is based on a hypothesis
of periodicity and regularity for faults and test algorithms. It is proposed to
describe all the periodicity and regularity rules in a form of a special fault
periodic table (FPT) and March test template (MTT). FPT allows to consider
any large number of faults in one table and MTT allows to obtain March tests
without using special tools for their generation.

Q. E. Zupnipniiyub, wjunbdhynu U. Y. Toipnipjulb,
22 QUU wpnnwuwhdwiyub winud 6. U. Qnpjut

Ubuwppmpenibutph b pun wygnphpdutph wupptpujuimpjut

hhuynptq hhynn vwpptpod b gpu Yhpuendp hhonn uwwppbph
ubpnpywé huptwptunnwynpnny ypngtunph dwpunupuy bnnipniimd

Uhpjugugynud k unp dnnbgnud® junnighnt hwdpunhwinip ubpnypqué huptw-
ptunwynpnn wpnghunph Swpunwpuy binnipmnit hhony uvupptph phunwynpdwb hw-
dwp, npp hhdtgws £ whuwppnipniuitph b phun wignphpdubph wuwppbkpuwljwini-
plut b juintwnpmipjut hhynptqh Ypu: Unwewplynud £ wupphpuljwinipjut b
Jwintuwynpnipjub pninp uintubpp bupuqgqpt) wtuwppnipmniuttph FPT wuppbpw-
Jut wnyniuwlh U MTT Uwipp phunh owpnth wikupny: FPT-u pny) L wwwjhu tjupw-
qpl] judwywlwt ks puwbwlh wuwppmipnitubp Uk wnmniuwlh dby, hull MTT-u
poyl E nuhu wnwiw] Uwpy phunbkp’ wpwlg ogunugnpsknt npuibp stnn hunniyy
qnpdhpubp:

I'. 3. ApytionsiH, akagemuk C. K. IlykypsH,
uHoctpanblii wied HAH PA E. A. 3opsan

237

I'unore3a NnepuOANYHOCTH OIIMOOK M TECTOBBIX AJTOPUTMOB JIsI
YCTPOIICTB MAaMSATH M ee IPUMEHEeHNe B apXUTEKType npoieccopa
BCTPOEHHOT0 TECTHPOBAHMSA NAMATH

IIpennaraercst HOBBII MOAXOA K MOCTPOCHUIO apXUTEKTYPhl YHUBEPCAIBHOTO HPO-
L[ECCOPa BCTPOCHHOI'0 TECTUPOBAHUS JIJIsl YCTPOUCTB aMsTH, OCHOBAaHHBIHM HA TMIIOTE3E
MEPUOAMYHOCTH U peryisipHoct omubok. [Ipeanaraercst omnucars Bce npaBuiia Mepuo-
JUYHOCTH W PETYISIPHOCTH B BHJIE CHEIUATBLHOM NEPHOIMYECKONH TaOMHMIBI OMMOOK
FPT u ma6nona mapui-tectoB MTT. FPT mo3Bosisier onucath MpOU3BOJIBHO OOJBIIOE
KOJINYECTBO OLIMOOK B enuHOM Tabnuie, a MTT — nonyuaTh Mapui-tecTsl 0€3 UCIOINb-
30BaHU CIIEUANIBHBIX CPEJICTB UX TeHEPAIUH.

References

1. Boutobza S., Nicolaidis M., Lamara K.M., Costa A. - International Test Conference.
2005. P. 1155-1164.

2.Zarrineh K., Upadhyaya S. J. - Conference on Design, Automation and Test in
Europe. 1999. P. 708-713.

3. Hakhumyan A., Harutyunyan G. — International Conference on Computer Science and
Information Technologies. 2011.P. 287-290.

4. Hamdioui S., Wadsworth R., Reyes J. D., Van de Goor A. J. - Journal of Electronic
Testing: Theory and Applications (JETTA). 2004. V. 20., N 3. P. 245-255.

5. Van de Goor A. J. Testing semiconductor memories: Theory and Practice. 1991.

6. Harutyunyan G., Hakhumyan A., Shoukourian S., Vardanian V., Zorian Y. - Journal
of Electronic Testing: Theory and Applications (JETTA). 2011.V. 27, N 6. P. 753-
766.

7.Van de Goor A. J., Al-Ars Z. - VLSI Test Symposium, 2000. P. 281-289.

8. Hamdioui S., Van de Goor A. J., Rodgers M. - International Workshop on Memory
Technology, Design, and Testing. 2002. P. 95-100.

9. Hamdioui S., Gaydadjiev G. N., Van de Goor A. J. - Workshop on Circuits, Systems
and Signal Processing. 2003. P 84-89.

10.Dilillo L., Girard P., Pravossoudovitch S., Virazel A. - European Test Symposium.
2004. P. 140-145.

11.Hamdioui S., Al-Ars Z., Van de Goor A. J. - VLSI Test Symposium. 2002. P. 395-
400.

12.Harutunyan G., Vardanian V. A., Zorian Y. - VLSI Test Symposium. 2005. P. 53-59.

13.Harutunyan G., Vardanian V. A., Zorian Y. —Design and Diagnostics of Electronic
Circuits and Systems, 2006. P. 260-265.

14.Harutyunyan G., Shoukourian S., Vardanian V., Zorian Y. - Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD). 2012.V. 31.N 6.
P. 941-949.

238

