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1. Introduction. Let S, be the group of all permutations of ann -element set. We investigate the

computational complexity of the following problems.

Problem 1 (Permutation Generation by Sets). Given a permutation ze S, and a collection of
sets X,,...,X, of permutations from S,, decide whether = can be expressed as a composition
T =0,0,...0,,Wherec; e X;,1<i<m, and if the answer is positive, find the permutations o;.

This problem is obviously in NP, as a sequence of o,,0,,...,0,, can be guessed from respective

sets and easily tested forz =0,0,...0,,. The number of guesses grows exponentially, as it is equal

m

o] JIx,

i=1

, where |Xx,| stands for the number of elements in X,. We construct a polynomial-time

reduction from the Subgroup Distance Problem (see[1,2]), which is well-known to be NP -complete.
This proves NP-completeness of the Problem 1.

Problem 2 (Permutation Knapsack). Given a permutation zeS, and a sequence of
permutations o,,0,,...,0, from S, , decide whether there exists a subsequence X of indeces, say
i <i<...<i, thatr =0, 0, ...0; , and if the answer is positive, find X . (Note that X may have any

lenght between 1 andm )
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This problem is also in NP, as the sequence of indeces X can be guessed and the condition

z=0,0,...0; tested in polynomial time. The number of possible guesses is exponential and is equal

to2™. We prove NP-completeness of this problem by construction of a polynomial-time reduction
from the Monotone One-In-Three 3Sat problem , which is NP -complete (see [3,4]).

We show by restriction that the Problem 1 contains the Problem 2 as a special case, which
corresponds to an instance of the Problem 1 with |X;|=2 for eachie {1,2.....m}. Thus, the Problem 1
remains NP -complete even in case all sets X, consist of exactly 2 permutations.

2. NP -completeness of the Permutation Generation by Sets.

Definition 3. The Cayley distance d(z,0) between permutations = and oe S, is the minimum
number of transpositions which are needed to change = to o by post-multiplication, i.e.

d(z,0)= min{n|0' =700, ... Py, Py 1S A transposition} .
The distance from a permutation r to a subgroup H <S, is defined as gg} d(r,0).

Problem 4 (Subgroup Distance). Givenze S,, a set of generators of a subgroup H <S,, and an
integer K , decide whetherd(z,H)<K .

It was first proven in [1] that the Subgroup Distance Problem is NP -hard and, subsequently, a
much simpler proof of NP- completeness was given in [2].

To prove NP-completeness of the Problem 1 we use the well-known algorithm of Sims that

constructs a set of "strong" generators for a permutation group given by a set of generators (see

[5,6]). Let a subgroup G<S, is given by a set of generators7 . Sims's algorithm (also known as

Schreier-Sims algorithm) constructs in polynomial time a sequence of sets of permutations

Y,.Y,,....,Y,_, such that any permutation in G can be uniquely expressed as a composition g,0, ...0,_;,
where o;eY,1<i<n-1. Note that each Y, contains the identity permutation. The collection of sets
Y,.Y,,....Y,, is called a set of "strong" generators for G. Having this set of generators one can easily
test whether a given permutation from S, belongs to G.

Theorem S. The Permutation Generation by Sets problem is NP -complete.
Proof. As stated above, for the reduction we use the subgroup distance problem. So consider an

instance of subgroup distance problem, consisting of a given permutationze S,, a set of generators
of a subgroup H <S,, and an integer K . In order to transform this instance to an instance of the

permutation generation by sets problem, first we apply Sims's algorithm to the set of generators of

H to obtain a set of "strong" generators -Y,,Y,,....Y, ;. This is done in polynomial time. We denote
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by Z the set consisting of the identity permutation and all transpositions in S, . Obviously|z| = 1+(Zj .

Now we define m=n-1+Kand X,=Y, for 1<i<n-1 and X;=Z forn<i<m. It can be readily

verified that the size of X,,...,X,, 1s polynomial. Thus = and X,,...,X, form an instance of the

permutation generation problem. Any composition of the form o,0,...0,, whereo, € X;, 1<i<m,
can be split into two parts - ¢,0,...0,, and o,...0,,,_, . The first part represents a permutation from
H and each permutation from H can be obtained this way. The second part represents a composition
of not more than K transpositions and any composition of K or less transpositions can be obtained
that way. It is clear now that
dr,H)S K & r=0,0,...0,,0;,€ X;,1<i<m.
3. NP-completeness of the Permutation Knapsack.

Problem 6 (Monotone One-In-Three 3Sat). Given a conjunctive normal form D over the set of

q
Boolean variables x,x,....,x,, such thatD= AK;, where each clause K; consists of exactly 3
j=1

different literals, which are simply variables, i.e. there is no negation, decide whether there is a

truth assigment to the variables such that each clause K; has exactly one true literal (and thus

exactly two false literals).
Theorem 7. The Permutation Knapsack problem is NP -complete.

Proof. Consider an instance of Monotone One-In-Three 3Sat problem, consisting of variables

X5 Xp5enes X

q
, and a conjunctive normal form D= AK;. To transform this to an instance of the

j=1
Permutation Knapsack problem we set m=p and n=3q. Construct the permutation z that acts on
{.2.....n} as follows. For each j=12,..49 define M; as {3j-23j-13,}; therefore
{L2....n}=M UM, U...uM, and the union is disjoint. We define z to act on M; as a 3-
cycle(3j-23j-13)), i.e = performs a cyclical shift on M,,1< j<q. Permutationso;,1<i<m, are
defined as follows: o; acts on M; as a 3-cycle (3j-23j-13)) if x € K; and fixes all points in M
ifx;e K;,1<j<q. Thus, o, performs a cyclical shift on M;-s that correspond to the clauses
containing x; and fixes all other points. Note that for each j there exist exactly 3 permutations o;

L

that cyclically shift the point in M ;.
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Let f:{x.x,.....x,}] >{0.1} be a truth assignment such that each clause K, has exactly one true
literal and fx)=f(x)=...=f(x)=1 and f(x)=0 for the rest of the variables. Consider the

compositiono; o, ...0; . For each je{l,2,...,q} exactly one of the variables x,,x ,...x say x

LI R

belongs to K, hence o; shifts cyclically the points in M ; and all other permutations o, ,...,0; fix
those points. Therefore for each je{1,2,...,4} the composition o; o; ...c; performs a cyclical shift on
M; and so z=o0,0; ...0; and this presents a solution of the instance of the Permutation Knapsack

problem.

Now assume thatz =0, 0, ...0; . Define the truth assigment by settingx, =1 & e {ijiy,...;, } . It
can be readily verified that for an arbitrary j exactly one of the permutations o; .0, .....0; cyclically
shifts M; and the rest fix all points inM . Let this be o, . This means that x; is the only true valued
literal that belongs to K; and so K; has exactly one true and two false literals. Therefore, the above

truth assigment solves the instance of the Monotone One-In-Three 3Sat problem.
Theorem 8. The Permutation Knapsack problem can be reduced in polynomial time to the

Permutation Generation by Sets problem with |X,|=2 for each ie{1,2,...,m}.
Proof. Let = and o,,0,,...,0,€ S, be an instance of the Permutation Knapsack problem. For
each ie{1,2,....m} define X; ={o,,e}, where e stands for an identity permutation. Then the instance

for the Permutation Generation by Sets will be z and X,,X,....,X,,. Obviously, 7=0,0, ...0;, &7

I

can be represented by a composition of permutations from X,,X,,...,X,

Corollary 9. The Permutation Generation by Sets remains NP complete even if each X,

consists of 2 elements.
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On NP-completeness of Some Permutation Generation Problems

We investigate the computational complexsity of two problems concerning permutations:
finding an expression for a given permutation 7 € S, as a composition of permutations 0,0, ...0

Y m?

taken from the given sets of permutations o, € X,,...,0, € X, , or as a composition of

permutations P, p, ...p0, , I <i, <...<i,, picked from agiven sequence of permutations
PisPose-s P, - We prove NP-completeness of the both problems and show that the first problem
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contations the second one as a specialcase, which correspondsto an instanceof the first problem with
|X l.| =2 foreach ie {1,2,...,m}. Thus, the first problem remains NP-complete even in case all sets

X, consist of exactly two permutations.

U. U. Ujkpuwiyul, U. 9. Unnnjut
Stnunpnipjnibutph sudwb npny jpunhputph NP-nhynipjut JEpupkpyug

Zbnwgnuuynud £ wbnungpnipnitubphtt Jepwpbpnn  Gplynt  jughpubph  hwpynquljut
pupmpniip gk wpws 7€ S, nknunpnipul tkpljujugnidp nplus nkqunpmpnibikph
puqunipiniuitphg yipgws o, € X,,...,0,, € X, wmbknunpnipjniuutph 0,0, ...0, wpunwunpjuih

I

wbtupny, b wpqus p;, P,,..., P, wknuopmpnibbutphg pnpdws p, o, ...p; . i <i, <...<i,
wpunungpuh mbkupny: Uywgnigynid k Gplnt jpughpubph NP-1phynipjniup b gnyg k wipynud, np
wnwoht fnunhpp wupnibwlnwd k Epypopnp npytu dwutwynp glwyp, npp hwdwyuwunwupuwinid
E wnwoht juunph tdniphty, npnid |X l.| =2 pnmop i€ {1,2,...,m} hudwp: Ujuyhuny, wnwght
huunhpp dunwd £ NP-1phy unyuhul wyt ghypnud, Epp pnnp X, puqunipnibubpp yupnibwynid
Eu &hown Eplnt vnwpp:

A. A. AnekcansH, A. B. Corosin
O0 NP-1ioJIHOTEe HEKOTOPBIX 32/1a4 FreHepaluu MOJACTAHOBOK

I/IccnenyeTca BBIYUCIIUTCIbHAA CIIOKHOCTb ABYX 3aJad, KacCcaromuxcCsa IIOJCTaHOBOK:
BBIPpAXXCHUA 3aJJaHHON MOJCTAaHOBKU T € Sn B BUAEC NPOU3BEACHUA IIOACTAaHOBOK O,0,...0,

m?

B3ATBIX U3 33JaHHBIX MHOXECTB IOJICTAHOBOK O, € X,,...,0, € X, , WIK B BUJE NPOU3BEACHHUS

NOJCTAHOBOK P, P, ...0; , I <Iy <...<i;, BbIOpPaHHBIX M3 3a/@HHOH MOCICAOBATEILHOCTH

ik
HOJACTaHOBOK P, 0,,..., P, - Jokazana NP-nonHoTa o0eux 3ajay U MOKa3aHO, YTO MepBasi U3 HUX
COJIEPUT BTOPYIO B BHJIE€ YAaCTHOIO Clly4asi, COOTBETCTBYIOUIETO 3K3EMIUISIPY MEpPBOM 3adauu C
|X i| =2 11d BCceX [€ {1,2,...,m}. Takum oOpaszoMm, mepBasi 3amada octaercs NP-TIOTHOW Jaxke B

CJIydac, Korja BCC MHOXKCCTBaA Xi COCTOSAT B TOYHOCTHU M3 ABYX IMOJACTAHOBOK.
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