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1.Introduction. Certain partial differential equations on infinite dimensional spaces can be
treated via infinite dimensional dynamical systems. Consequently one needs to develop the theory of
infinite dimensional dynamical systems. In the paper [2] authors define a natural Riemannian
structure on the space of square integrable functions 7?(0,1) on the basis of which they introduce a so
called infinite dimensional torus T . For a certain class of Hamiltonians they were able to prove the
existence of a viscosity solution to the cell problem on T. As an application they obtain existence of
an existence of absolute action-minimizing solutions of prescribed rotation number for the one-
dimensional nonlinear Vlasov system with periodic potential.

The aim of the current work is to generalize the results proven in [2] for the higher dimensional
case. As a consequence one can get the existence of the solutions and asymptotics to the d -
dimensional (4 >1) nonlinear Vlasov system with periodic potential. Moreover, we prove the
existence of the so called two sided minimizers for the cell problem over the d-infinite dimensional
torus T .

2.Notations and definitions. 1¢ will denote the « -dimensional unit cube in R?. As usual || and
(-) will respectively represent the Euclidian norm and inner product in R?. T¢ will be the notation

for the d -dimensional torus. The distance on T¢ is the following:
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Ixl .= inf |x+kl xe T,

d =
T kel

L’ will be the 4 -dimensional Lebesgue measure on R . v, will be the restriction of L on the unit
cube1?.

We will denote by L* (I" :R? ) the space of all square integrable functions defined on the unit cube
LZ(I";R"):{M: L R";J‘Id | M (x)? dvy <o} LZZ(Id;R") will be the set of the square integrable
functions with d -integer values: 12, (I";Rd ) ={Me L (I";R" ) :M(x)e 24, Vxe 19}.

P,(RY) denotes the set of all Borel probability measures on R with finite second order
momentS:Pz(Rd):{,ueP(R");IR,, IxI* du<oo}.

If (E,) is a norm space, [*(0,T;E)is the set of Borel functions M :(0,7) - E such that
T
I IM, g <o . We will write M, in place of M(r).
0

If M:(X,F)— (¥,6) is a measurable map and x is a measure defined on a sigma algebra F then
v =Miu is the measure defined on sigma algebra & given by v[C]=u[M ' (C)] for all setsCe 6 .

Suppose (S,dist) is a complete metric space ando:(0,7) — S . Denote by o, the value of o at 7.
If there exists Be I7(0,T) such that dist(c,,0,) < .[ ' Bu)du for every s<t in (0,7), we say that ¢ is

absolutely continuous. Denote by AC?(0,7;S) the set of all absolutely continuous paths o:(0,7) — S .

Denote by G the set of bijections G:1? -1 such that G,G™' are Borel and preserve the
Lebesgue measure.

Definition 2.1. Let U: 2(1?; RY) - Ru{e}. (i) We say that U is periodic if it is invariant under
integer valued translations. (ii) We say that U is invariant under the action G or rearrangement
invariant if UM -G)=UM) for all M e I?(I%; R?) and GeG.

3.d —infinite dimensional torus T¢ and the space $¢. Let R — Z be the integer part function

i.e. X=sup{neZIn<x} and 7z():R —[0,1) be the fractional part function i.e.z(x)=x-%, forxe R.
L2,(1%) is a subgroup of (2(1*),+) and thus we can consider the quotient space which will be the d -
dimensional 1?-torusT¢. So we set

T2 RY) = LZ(I";R")xLZ(I“;R“),T" = Lz(ld;Rd)/LZZ(I";R").

Note that function 7 projects a function M =(M,,...,M,)e I? (I 4. R4 ) onto T as follows
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T(M (x)) = (M, (x)), 7(M,(x)),...,.7(M ;(x))),x€ ‘.
The norm on L’ (7¢;R? ) induces distance dist, on T* given by

dist;(M|,M,)= inf IIM,-M,-ZIl. 3.1
zelZ(14;RY)
Endowed with this distance T¢ becomes a metric space.

Proposition3.1. (T¢,dist,) is a complete, separable metric space.
P Z p p p

We do further factorization of the space T with respect to the groupG. Denote by W,, the

Wasserstein distance on the torus T¢. Recall that if x,ve P(T?) and I'(4,v) is the set of Borel

measures on T xT? which have x and v as marginals, then

2 — 2
W (1,v) = 7€1rr(1;flyv).[ psepd | X= Y [ dy(x,y) (3.2)

We will identify P(T¢) with P((0,1)?). The group G is a non commutative group which acts on
>(I*RY): (G,M)—>MoG. This is an action which preserves the norm ofM . But G acts
on 2, (1*;R?), it provides an action on the quotient space T? .

The metric on T induces a function which is a quasimetric on the quotient space T /G i.e. for
M ,M,e *(I*;R?) put

distweak (MI’MZ) = lan(‘}diStZ (MI’MZ OG) .
(S

It is symmetric and satisfies triangle inequality because dist, does so. So it is an quasimetric
onT“/G. It is not a metric because there can be two functions M,,M, which have 0 weak distance
but their projections on T?/G are different. We metrize it by gluing the functions which have 0
weak distance.

Definition 3.1.The space S, is the factor space of the space I*(I) w.r.t. the equivalence relation
~ M, ~ M, iff dist, . (M,,M,)=0. Furthermore the distance disr; 1is defined by the formula
distg(IM,1,IM,]) = dist, . (M,,M,) for any equivalence classes[M,],[M,]e S, .

Remark 3.1. One can prove that M, ~ M, iff 7(M,)itv, = 7(M, )iiv, .

The metric space (S,,dist;) enjoys some nice topological properties.
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Theorem 3.1. The metric spaces (S,,distg) and (P (T),W,) are isometric.

From this Theorem we immediately have:

Corollary 3.1.The space (S,,dists) is a complete, separable, compact metric space.

We next compute the first cohomology group of T, and then the first equivariant cohomology
group of T under the action of G.

Proposition 3. 2. Assume §:I°(/“;R?) - R is Frechet differentiable and Lipschitz. (i) If 4s is
periodic in the sense that d,,,,S=d, S for all Me ?(1*;R?) andZe I?,(I?;R?), then there exist a
unique Ce I*(I*;RY) and U:I*(J1?;R?) >R periodic such that S(M)=UWM)+(C,M). (i) If, in
addition, M —d, S(M) is rearrangement invariant the C is a constant function and U is

rearrangement ivariant.

4.Weak KAM theory on *(/¢;R%).Let ce R? and

L(M,N) :%II NIP —%W(M),
together with
L.(M,N)= L(M,N)—cj Ndvy,L(M,N)=L,.(M,-N).
1
Here, W:I?(I*;R?) >R is C' periodic, semiconcave and semiconvex, Lipschitz and differentiable
invariant under the action of G. Define the Legendre transforms of L(M,) and L.(M,):
1 , 1
HM,N)y=—IINI? +=W (M),
2 2
and
H.(M,N) =H(M,N+c),HM,N)= H.(M,-N).
We now consider viscosity solutions to Hamilton-Jacobi equations in the infinite dimensional

setting. We recall the definition of viscosity solutions.

Definition 4. 1. Let vV be a real valued proper functional defined on *(1¢;RY) with values in
Ru{teo}. Let M e I2(17;R?) and e 2(19;RY) . (i) We say that & belongs to the subdifferential of v
at M and we write ée DV(M) if V(M +X)-V(M)>(E X)+o(l X 1) for all X e I2(17;R?). (ii)) We say
that ¢ belongs to the superdifferential of vV at M and we write£e D*V(M)if —Ee D™ (-V)(M) .

Remark 4.1. When the sets bV(M) and D*V(M) are both nonempty, then they coincide and

consist of a single element. That element isVV (M), the gradient of V at M .
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We can now define the notion of viscosity solution for a general Hamilton-Jacobi equation of

the type
F(M,VNUM))=0.

Definition 4.2. Let v :?(1?;RY) - R be continuous. (i) We say that V is a viscosity subsolution
for (4.1) if F(M,¢{)<0 for all Me *(1?;R?) and all{ e D*'V(M). (ii) We say that V is a viscosity
supersolution for (4.1) if F(M,{)>0 for all M e *(1?;R?) and all{ e D"V(M). (iii) We say that V is
a viscosity solution for (4.1) if v is both a subsolution and a supersolution for (4.1).

4.1. A preliminary stationary Hamilton-Jacobi equation. Define an action

A, (x) = J‘: e L (x, )t

which is well defined for xe AC?.((0,%);I*(I*;R?)), since L is bounded by below by-c*/2. We do
not display its dependence on ¢ to keep notation simpler. Set

V(M) =inf{A,(x): xe AC}.((0,00); I*(I*;R?)} 4.2)

Since L is invariant under the action of G, so isV, . The fact that L(-,N) is periodic ensures that V, is
periodic.

In [2] it was proven that in the one dimensional case, when M is monotone nondecreasing (4.2)
admits a minimizer. This minimizer is inH?_((0,.0);I*(I“;R?)) and satisfies the Euler-Lagrange
equation. We have shown that for every 4 >1 the minimizers exist on an everywhere dense Gj
subspace of the space I*(1*;R?).

One the most important features of the value function V, is the following:

Theorem 4.1.V, is a Lipschitz function and a viscosity solution of the equation

EV.(M)+H M.,V ,V,(M))=0. (4.3)

Furthermore we have that:

Proposition 4.1. The superdifferential D7V, is not empty at every pointM e [*(I/;R?).
Moreover V, is differentiable on an everywhere dense G; set.

Main result concerning variational problem 4.2 is the following theorem:
Theorem 4.2. Problem (4.2) admits a unique minimizer for any differentiability point

M e I*(1Y;RY) of the value function V, .
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4.2.The cell problem. Consider functionU, =V, —inf V,, where V, is the value function defined
in the previous section. One can show that:
Proposition 4.2. (i) The function U, is Lipschitz and U,(M)=U,(M) whenever [M]=[M].

(i1) Every subfamily of {U,},., admits a subsequence converging uniformly to some U which

is x-Lipschitz. Every subfamily of {eV,},.,, admits a subsequence converging uniformly to a
constant depending on ¢ which we denote-H (c) .

The limit function U enjoys a nice variational representation.

Proposition 4.3. For any 7 >0 and any M e I*(1*;R?)

U(M) =inf{ IOT I:(x(s),)'c(s)) +H(c)ds +U(x(T)); x(0)=M, xe AC*((0,T); L*(1¢;R%))} 4.4)

Theorem 4.3. U is a viscosity solution to the equation

H(M,c+V ,U)=H(c). 4.5)
Additionally for every differentiability point M e I*(1¢;R?) of the function U there exists a unique

trajectory xe C?([0,e0); L2(I*;R?)) which is a minimizer for the problem (4.4) for all times 7 >0 and

which satisfies Euler-Lagrange equation
==V, W, (4.6)

with x0)=M and i(O) =—(c+VUM)). Furthermore, X minimizes the action
Ar(y)= J.Z[Z(y(s),}(s))+ﬁ(c)jds over all trajectories ye AC*((0,T);[*(I1*;R")) with endpoints
y(0)=x(0) and y(T)=x(T).

We also show the existence of so called two sided minimizers of the action
AL ()= J ; [i(y(sx Y+ E(c)]ds :

Theorem 4.4. There exist points (x,p)e T I*(IY;RY) s.t. there exists a unique trajectory
xe C*(R;2(1¢;R?)) which  satisfies the  Euler-Lagrange  equation  (4.6),  passes
through (x, p) : x(0) = x, p(0) = p , and minimizes the action A ;2 for all times 1 <t,.
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Lagrangian dynamics and a Weak KAM theorem on
the d -infinite dimensional torus

The space *(0,1) has a natural Riemannian structure of the basis of which in their recent work

W. Gangbo and A. Tudorascu introduced an infinite dimensional torus T. For a certain classes of

Hamiltonians they prove an existence of a viscosity solution to the cell problem on T . In the current work we generalize

obtained results for the so called higher dimensional case, where we start with the space Lz((O,l)d ;Rd) and

introduce the d —infinite dimensional tours T .

L. Unippkljjub, 7. Gndbku
Lwgpudjut phtwdhlw b pniy) YUU phnpbd ¢ - mudtpe swhwuh wuinph 4pu

(0,1) wnwpwdmpinitt odndws t phwjut Ohdwiyub Jupnigquwdpny: Zhdbykn] wyn
Juwrnigyuébph Jpw, 9. Gubgpnt b U. Smuppnpuulnit ubpdniwsky Bu waykpe sunputh T wnnph
qunuthwpp: Zwdhpnniyubbph npnpwlh nuup hudwp bpubp wywugmgly bb wwppalui
Zuupjnnt- 8wlnph hwjuwuwpdwt pny) nsdwt gnjnipniup T-h Jpu: Unyb wppuwwnwbpnid
ukup pinhwpugunud Gup Jkpp tpfws wpymbpp puquwyuth phyph hudwnp:

JI. Hypb6exkss, [I. T'omec

Jlarpamxesa suHamuka u crabas KAM reopema Ha d -6eCKOHEYHOMEPHOM TOpe

ITpocTpancTBo 2 (0,1) umeer ectecTBeHHYI0O PumaHOBY cTpykTypy. Ha OCHOBaHHH 3TOH CTPYKTYpBI

B. T'aar6o m A. Tymopacky B OIHOH W3 HETaBHUX paOOT BBEIU IOHATHE OecKOHeuHoMepHoz2o Topa T.

BnocnmencTBun MM yAalioch JOKa3aTh CYIIIECTBOBAaHHE BS3KOCTHOTO PEIICHUS JJIEMEHTApHON 3amadu

TamuibroHa — SIKOOK. DTH pe3ysabTaThl HAMH 00OOIICHBI TSl TaK Ha3bIBAEMOro d -0€CKOHEYHOMEPHOTO

d
Topyca T?, NOy4eHHOro U3 MPOCTPAHCTBA L ((0,1) ;Rd) AHAJIOTMYHBIM 00Pa30OM.
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