ЦВЦИЗЦЪР ЧРОПРОВОРЪСНИ И ЦОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИ

 НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИ

 NATIONAL ACADEMY OF SCIENCES OF ARMENIA

 ДОКЛАДЫ
 26401935260

(111 ·

2011

Nº 3

ФИЗИКА

УДК 535.34

Г. Г. Демирханян^{1,2}, Э. П. Коканян^{1,2}, М. Айлери³, Г. Риннерт⁴

Нерезонансное перераспределение энергии электронного возбуждения в LiNbO3:Yb³⁺

(Представлено академиком Э.М. Казаряном 18/IV 2011)

Ключевые слова: ниобат лития. редкоземельные ионы, безызлучательное перераспределение энергии

безызлучательного процессы Как известно, Введение. 1. перераспределения энергии электронного возбуждения (БПЭВ) в примесной наиболее простым проявлением которых являются подсистеме, концентрационное тушение и сенсибилизация люминесценции. миграция и кросс-релаксация энергии возбуждения, оказывают существенное влияние на спектроскопические и лазерные характеристики кристаллов. легированных редкоземельными (РЗ) ионами. В определенных ситуациях, при сильно неоднородном распределении примесных ионов в матрице кристалла. БПЭВ может стать причиной пленения электронного возбуждения [1-4]. Все эти явления оказывают ощутимое, а в некоторых случаях и определяющее, влияние на динамику заселения и расселения лазерных уровней. При исследовании процессов БПЭВ в примесных кристаллах возникают две представляющие самостоятельный интерес задачи: вычисление вероятностей элементарных актов БПЭВ и определение их температурных и концентрационных зависимостей, влияния на спектроскопические и лазерные ИХ степени выявление характеристики исследуемых материалов.

Первая удовлетворительная теория резонансного БПЭВ, индуцированного электрическим диполь-дипольным взаимодействием примесных ионов в конденсированной среде, построена Фёрстером и впоследствии обобщена Декстером для электрического мультиполь-мультипольного (ММ) и обменного взаимодействий (ОВ) [5]. В дальнейшем теория БПЭВ в примесных кристаллах

развивалась и совершенствовалась как в направлении исследования механизмов БПЭВ, в том числе с учетом штарковской структуры оптического спектра примесных ионов, так и разработки методов суммирования вероятностей элементарных актов БПЭВ по примесной подсистеме [5-7].

При рассмотрении элементарного акта БПЭВ от одного примесного иона (донора) к другому (акцептору) различают резонансные и нерезонансные . механизмы, имеющие существению отличные температурные зависимости. В нервом случае энергия возбуждения донора полностью перелается акцептору, а во втором часть энергии возбуждения донора переходит в энергетический (например, фононный) резервуар решетки или, наоборот, дефицит энергии возбуждения донора полностью резервуара. В кристаллах, легированных РЗ¹ ионами, нерезонансные (однофононные) процессы БПЭВ могут протекать достаточно эффективно, поскольку отдаленность соседних штарковских уровней в мультиплетной группе спектра РЗ¹ иона, как правило, не превосходит энергию дебаевского фонона решетки, вследствие чего возпикает множество каналов нерезонансного БПЭВ. В любом случае всроятность БПЭВ пропорциональна интегралу перекрытия $g(\Delta)$ спектров

поглощения акцептора и излучения донора, посредством которого и определяется температурная зависимость вероятности переноса. Гак, для резопансных механизмов в случае лоренцевского контура спектральных линий $g(\Delta)$ имеет вид [8]

$$g_{res}(\Delta) = \frac{1}{\pi} \times \frac{\left(\Gamma_{i_d f_d} + \Gamma_{i_a f_a}\right) \left[\left(\Gamma_{i_d f_d} - \Gamma_{i_a f_a}\right)^2 + \Delta^2 \right]}{\Delta^4 + 2\Delta^2 \left(\Gamma_{i_d f_d}^2 + \Gamma_{i_a f_a}^2\right) + \left(\Gamma_{i_d f_d}^2 - \Gamma_{i_a f_a}^2\right)^2},$$
(1)

где Δ – лежащая в пределах ширины линии расстройка резонанса, Г гемпературно-зависимая однородная ширина соответствующей спектральной линии В случае нерезонансного БПЭВ температурная зависимость определяется функцией распределения фононных состояний. Так, для нерезонансного БПЭВ с поглощением одного кристаллического фонона $g(\Delta) \sim [exp(\hbar\Delta/kT) - 1]^{-1}$, а для процессов с излучением одного фонона pemeтки $g(\Delta) \sim 1 + [exp(\hbar\Delta/kT) - 1]^{-1}$ (\hbar – постоянная Планка, k – постоянная Больцмана, T – температура).

В настоящей статье на основе детального вычисления межштарковских магричных элементов рассчитаны вероятности элементарных актов нерезонансных однофононных процессов БПЭВ, индуцированных ММ и косвенным диполь-дипольным (КДД) взаимодействиями примесных ионов в

кристалле L1NbO3: Yb³⁺.

Нерезонансное 2. MM БПЭВ. Легированные РЗ ионами циэлектрические кристаллы подразделить можно Ha две слабо взаимодействующие подсистемы: кристаллическую решетку и находящиеся в переменном КП примесные ионы. Гамильтониан такой системы с учетом кулоновского взаимодействия оптического электрона примесного иона с остальными ионами решетки и с оптическим элекгроном другого примесного иона, находящегося на расстоянии R от первого в представлении вгоричного квантования, можно записать в видс

$$\hat{H} = \sum_{\nu} \varepsilon_{\nu} \hat{a}_{\nu}^{\dagger} \hat{a}_{\nu} + \sum_{\alpha} \hbar \omega_{\alpha} \hat{b}_{\alpha}^{\dagger} \hat{b}_{\alpha} + \hat{H}_{\mu\mu}, \qquad (2)$$

где первые два члена представляют, соответственно, энергию примесного иона в статическом КП и энергию кристаллических фононов: \hat{a}_{ν} и \hat{a}_{ν}^{*} (\hat{b}_{α} и \hat{b}_{α}^{*}) соответственно, электронные (фононные) операторы уничтожения и рождения, α нумеруст волновой вектор и ветвь фонона, ω_{α} – частота фонона типа α , ν электронные состояния примесного иона, $H_{\mu\nu}$ – гамильтониан ММ изаимодействия примесных ионов, разложение которого по степеням относительных смещений ($|\Delta u|$) ядер примесных ионов в представлении вторичного квантования имеет вид

$$\hat{H}_{mi} = \sum_{v,v',\lambda,\lambda'} \sum_{\lambda,\lambda'} C(v,v') C(\lambda,\lambda') \hat{a}_{v}^{*} \hat{a}_{v'} \hat{a}_{\lambda'}^{*} \hat{a}_{\lambda'} + \sum_{n} \sum_{v,v',\lambda,\lambda'} \sum_{\lambda,\lambda'} C_{a_{1}\dots a_{n}}^{(n)} (v,v') C_{a_{1}\dots a_{n}}^{(n)} (\lambda,\lambda') \hat{a}_{v}^{*} \hat{a}_{v'} \hat{a}_{\lambda'}^{*} \hat{a}_{\lambda'} (\hat{b}_{a_{1}}^{*} + \hat{b}_{a_{1}}) \dots (\hat{b}_{a_{n}}^{*} + \hat{b}_{a_{n}})$$
(3)

Тогда в первом порядке теории возмущений по фононным операторам для вероятности нерезонансной прямой ММ передачи энергии в донор-акцепторной наре получим

$$W_{\mu\mu}^{(\pm)} = \frac{2\pi}{h} \sum_{\alpha} \left| C_{\alpha}^{(1)}(i_d, f_d) C_{\alpha}^{(1)}(i_a, f_a) \right|^2 {n_\alpha \choose 1+n_\alpha} \delta\left(\varepsilon_{i_d} f_d - \varepsilon_{f_a} + h\omega_\alpha \right), \qquad (4)$$

гле $n_{\alpha} = [\exp(\hbar\omega_{\alpha}/kT) - 1]^{-1}$ – среднее число фононов типа α , знаки и соответствуют процессам, сопровождающимся поглошением и испусканием одного фонона, соответственно. В длинноволновом приближении для колебаний решетки амплитуда вероятности перехода определяется выражением [9]

$$C_{\alpha}^{(1)}(v,v) \cdot C_{\alpha}^{(1)}(\lambda',\lambda) = \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} \frac{4\pi e^2}{R^{l+l+1}} \times \sqrt{\frac{2\pi \hbar w_{\alpha}}{3Mv_{\alpha}^2}} \times Y_{10}(\vartheta_{\lambda},\varphi_{\lambda}) \sin \vartheta_{\alpha} \times (5)$$
$$\times F_{l_{l_{2}}m_{1}m_{2}}^{(1)}(\vartheta,\varphi) \langle v | D_{l_{1}}(d) | v \rangle \langle \lambda' | D_{l_{2}m_{2}}(a) | \lambda \rangle,$$

гле

$$F_{l_{1}l_{2},m_{1}m_{2}}^{(1)}\left(\vartheta,\varphi\right) = \left(-1\right)^{l_{2}+1} \left[\frac{4\pi\left[\left(l_{1}+l_{2}+1\right)!\right]^{2}}{3\left(2l_{1}+2l_{2}+1\right)\left(2l_{1}+1\right)\left(2l_{2}+1\right)}\right]Y_{1-\left(m_{1}+m_{2}\right)}\left(\vartheta,\varphi\right)\times \left(\frac{1}{\left(l_{1}+m_{1}\right)\left(l_{1}-m_{1}\right)\left(l_{2}+m_{2}\right)\left(l_{2}-m_{2}\right)\left(1+m_{1}+m_{2}\right)\left(1-m_{1}-m_{2}\right)!}\right]^{\frac{1}{2}},$$

$$(6)$$

е – заряд электрона, М – масса кристалла, v_{α} – скорость фононов гипа α . δ_{α} – случайная фаза колебаний, (ϑ_k, φ_k) – сферические координаты волнового вектора фонона, (ϑ, φ) – сферические координаты вектора $\Delta \vec{U}$ – смещения ялер примесных ионов из положений равновесия (для продольных колебаний $(\vartheta, \varphi) = (\vartheta_k, \varphi_k)$), $D_{lm}(d) = \sum_{i} r_i^l(d) Y_{lm}(\theta_{di}, \varphi_{di})$ и $D_{lm}(a) = \sum_{i} r_i^l(a) Y_{lm}(\theta_{ai}, \varphi_{ai}) - 2^l$.

польные электрические моменты оптических электронов донора и акцептора

(суммирование ведется по всем эквивалентным электронам) Подставляя (5) в (4) и после интегрирования по фононным состояниям (в рамках приближения Дебая с учетом только продольных акустических колебаний решетки) проводя усреднение по направлениям волнового вектора фонона, для вероятности элементарного акта перезонансной ММ передачи энергии получим

$$W_{\mu\mu}^{(\pm)} = \frac{90 \cdot 64\pi e^4}{\rho v_o^3 R^{2(l_1+l_2+1)}} \frac{1}{(2l_1 + 2l_2 + 1)(2l_1 + 1)(2l_2 + 1)} G_{\pm} \times \sum_{m_1, m_2} \frac{\left\{\delta_{m_1 + m_2, -1} + 6 \cdot \delta_{m_1 + m_2, 0} + \delta_{m_1 + m_2, 1}\right\}}{(l_1 - m_1)! (l_2 + m_2)! (l_2 - m_2)!} \left|\left\langle f_d \left| D_{l_1 m_1} \right| i_d \right\rangle \left\langle f_a \left| D_{l_2 m_2} \right| i_o \right\rangle\right|^2,$$

$$(7)$$

где ρ – плотность кристалла, R – расстояние между донором и акцептором, v_0 – средняя скорость акустических воли в кристалле. Отметим, что из (7) при $l_1 = l_2 = 1$ формально получается выражение вероятности нерезонансного БГІЭВ, индуцированного КДД переходами:

$$W_{idd}^{(\pm)} = \frac{128 \cdot \pi e^4}{\rho v_o^5 R^6} G_{\pm} \sum_{m_1, m_2} \frac{1}{(1+m_1)! (1-m_1)! (1+m_2)! (1-m_2)!} \times (8)$$

$$\times \left\{ \delta_{m_1+m_2, -1} + 6 \, \delta_{m_1+m_2, 0} + \delta_{m_1+m_2, 1} \right\} \left| \left\langle f_d \left| D_{1m_1} \right| i_d \right\rangle \left\langle f_\sigma \left| D_{1m_2} \right| i_\sigma \right\rangle \right|^2.$$

Входящие в (8) матричные элементы КДД переходов можно вычислить по формулам, приведенным в [10]. Однако процедура расчета существенно

упростится, если магричный элемент КДД перехода заменить средним значением согласно формуле

$$\left|\left\langle f\left|D_{1m}\right|i\right\rangle\right|^{2} = \frac{1}{3} \sum_{m=-1}^{1} \left|\left\langle f\left|D_{1m}\right|i\right\rangle\right|^{2} = \frac{1}{3} \sum_{t} \Omega_{t} A_{t} (i \rightarrow f) \left|\left\langle J_{f}\right|\right| U_{t} \left|\left|J_{i}\right\rangle\right|^{2},$$

гле параметры Джалда-Офельта, коэффициенты $A_t(i \rightarrow f)$ определяют распределение интенсивности по штарковским состояниям [9,10]. Тогда вероятность КДД механизма выразится через силы линий переходов $S^{(idd)}(i \rightarrow f)$ в донорном и акцепторном ионах:

$$W_{idd}^{(\pm)} = \frac{11 \times 128 \pi e^4}{9 \rho v_0^5 R^6} \times S^{(idd)}(i_d \to f_d) \times S^{(idd)}(i_a \to f_a) \times G_{\pm}.$$
 (9)

Отметим, что усреднение выражений (7) и (9) по штарковским состояниям приводит к соответствующим формулам, полученным в [6].

3. Нерезонансное БПЭВ в LiNbO₃:Yb³⁺. Схема энергетических уровней иона Yb³⁺ в кристалле LiNbO₃ (LN) и соответствующие волновые функции в JM прелставлении, определенные диагонализацией потенциала кристаллического поля с точечной симметрией C_{3v} [9], приведены на рис.1. Видно, что первые возбужденные подуровни v₂ и v₆ мультиплетов F_{7/2} и ²F_{5/2} достаточно отдалены от соответствующих основных подуровней v₁ и v₅. Поэтому можно считать, что в начальный момент времени после селективного возбуждения донорный ион находится в состоянии v₅, а акцепторный ион – в основном состоянии v₁. Таким образом, возможны нерезонансные процессы БПЭВ с поглощением фонона и, поскольку энергия дебаевского фонона кристалла LN равна 350 см⁻¹ (T_D = 503 K [11]), то эти процессы могут протекать по схемам:

A)
$$v_5({}^2F_{5/2}) \xrightarrow{d} v_1({}^2F_{7/2}): v_1({}^-F_{7/2}) \xrightarrow{a} v_6({}^2F_{5/2}),$$

B) $v_5({}^2F_{5/2}) \xrightarrow{d} v_2({}^2F_{7/2}): v_1({}^-F_{7/2}) \xrightarrow{a} v_5({}^-F_{5/2}).$

Из правил отбора следует, что процессы БПЭВ индуцируются квадрупольквадрупольными (КК) ($l_1 = l_2 = 2$) и КДД переходами, вероятности которых определяются формулами (7) и (9), соответственно. Таким образом. применяя георему Вигнера – Эккарта и используя значение приведенного матричного олемента (7/2 $||U_2||5/2\rangle = \sqrt{6}/7$, выражение (7) можно преобразовать к виду

$$W_{qq} = \frac{32 e^4}{15 \times 49 \hbar \pi \rho v_0^5} \times \frac{\left(\frac{r_{Yb}^2}{r_{Yb}^2}\right)^4}{R^{10}} \times \frac{\Delta^3}{\exp(\hbar \Delta kT) - 1} \times |A_{qq}|^2, \quad (10)$$

где

$$\mathcal{A}_{qqr} \Big|^{2} = \sum_{m_{1},m_{2}} \frac{1}{(2-m_{1})! (2+m_{1})! (2-m_{2})! (2+m_{2})!} \times \Big\{ \delta_{m_{1}+m_{2},-1} + 6\delta_{m_{1}+m_{2},0} + \delta_{m_{1}+m_{2},1} \Big\} \times \sum_{M_{1},\dots,M_{1},n} \sum_{M_{1},\dots,M_{1},n} b_{J_{1,n}M_{1,n}} b_{J_{1,n}M_{1,n}} C_{J_{1,n}M_{1,n}}^{J_{1,n}M_{1,n}} C_{J_{1,n}M_{1,n}}^{J_{1,n}M_{1,n}} C_{J_{1,n}M_{1,n}}^{J_{1,n}M_{1,n}} \sum_{M_{1,n}M_{1,n}} b_{J_{1,n}M_{1,n}} b_{J_{1,n}M_{1,n}} C_{J_{1,n}M_{1,n}}^{J_{1,n}M_{1,n}} C_{J_{1,n}M_{1,n}}^{J_{1,n}M_{1,n}} C_{J_{1,n}M_{1,n}}^{J_{1,n}M_{1,n}} C_{J_{1,n}M_{1,n}}^{J_{1,n}M_{1,n}} \sum_{M_{1,n}M_{1,n}} b_{J_{1,n}M_{1,n}} b_{J_{1,n}M_{1,n}}$$

Здесь С^{JM} kg – коэффициенты Клебша – Гордана. h_{JM} – числовые коэффициенты в волновых функциях штарковских состояний (рис.1). Проводя и используя значения параметров [9,11,12]: р=4.612г/см вычисления $r_{1b}^2 = 0.613 \ a.e., v_0 = 7.05 \times 10^5 \text{см/c}, \Omega_1 = 1.3 \times 10^{-20} \text{см}^2, \Omega_4 = 2.98 \times 10^{-20} \text{см}^2, \Omega_1 \approx 0$ для вероятностей элементарных актов КК механизма получим:

A)
$$W_{qq}(Yb - Yb) = 5.05 \times 10^9 \frac{1}{\exp(384.5 T) - 1} \times \frac{1}{R^{10}} c^{-1}$$
 (12)

B)
$$W_{qq}(Yb - Yb) = 4.39 \times 10^9 \frac{1}{exp(436.9 T) - 1} \times \frac{1}{R_A^{10}}$$
 (13)

а для КДД механизма -

A)
$$W_{idd}(Yb - Yb) = 1.2 \times 10^{9} \frac{1}{exp(384.5 T) - 1} R_{A}^{6}$$
 (14)
B) $W_{idd}(Yb - Yb) = 2.5 \times 10^{9} \frac{1}{exp(436.9 T) - 1} \times \frac{1}{R_{A}^{6}}$ (15)

Критические радиусы и вероятности элементарных актов БПЭВ в LiNbO3:Yb

Механизмы		Канал БПЭВ			
БПЭВ		Резонансного	Нерезонансного		
		[9]	А	В	Суммарный
КК	R _c , A	8.2	4.12	3.97	4.34
	^a W _{d-a} , c ⁻¹	1.51-10	1.85 10-	1.27 103	3.12.103
КДД	Ret Å	7.9	8.34	9.06	9.80
	"W _{d-n} , c"	8.37 10	1.13 10 ⁵ c ⁻¹	$1.85 \cdot 10^{5} c^{-1}$	2.98-10
OB [13]	R _c , Å	4.1	3.29	3.44	3 45
	"Wd-a, c"	3.34.103	710	0.1	-01

Вероятность элементарного акта БПЭВ при Rd-a = 4 A

$$0 \qquad v_1 = \pm 0.5094 \quad \frac{7}{2} \pm \frac{1}{2} \quad -0.6164 \quad \frac{7}{2} \pm \frac{1}{2} \quad -0.6004 \quad \frac{1}{2} \pm \frac{1}{2} \quad \frac{1$$

Рис.1. Энергии (в см.) и волновые функции штарковских состояний иона Yb. в LiNbO.

Рис. 2. Зависимость вероятности элементарного акта нерезонансного БП ЭВ от температуры и расстояния между донором и акцептором

В таблице приведены значения критических радиусов, определенные из условия $W(R_c)\tau = 1$ ($\tau = 728.2$ мкс – время жизни возбужденного состояния донора [9]), и рассчитанные по формулам (12) - (15) значения вероятностей БПЭВ между донором и акцептором, образующим парный центр (Rd = 4 Å). Все численные расчеты выполнены для комнатной температуры.

Для суммарной вероятности нерезонансного БПЭВ, протекающего по схемам А и В. получим

$$W''(Yb-Yb) = \left\{ \left[\frac{1.2}{R^6} + \frac{5.05}{R^{10}} \right] \frac{1}{\exp(384.5\ T) - 1} + \left[\frac{3.02}{R} + \frac{4.39}{R_A^{10}} \right] \frac{1}{\exp(436.9\ T) - 1} \right\} \times 10^9$$
(16)

откуда для критического радиуса нерезонансного БПЭВ получим: $R_{c}^{(tot)} = 10.01$ Å. График зависимости W_{nr}(R.T) приведен на рис.2. Видно, что, как и следовало ожидать при высоких температурах (T > 400 K) (16) приводит к линейной зависимости от температуры, в то время как при достаточно низких температурах (Т < 100 К) получается более сложная зависимость от температуры в виде комбинации двух экспонент: exp(-384.5/T) и exp(-436.9/T)

Отметим также. что при концентрациях 1+2 ат.% среднее расстояние межлу примесными ионами (в предположении их равномерного распределения в матрице кристалла ниобата лития) равно 14 - 18 А. Для этих расстояний вероятность нерезонансной миграции при T=300 К согласно (16) равна W_{nr} = (180 - 50) с⁻¹, что превосходит величину вероятности резонансной миграции W_r = $(40 - 10) c^{-1}[9]$

4. Заключение. Таким образом. в кристаллах LiNbO3-Yb3* нерезонансные механизмы приводят к эффсктивному безызлучательному переносу энергии и их учет. наряду с резонансными механизмами, необходим при исследовании процессов безызлучательного перераспределения энергии возбуждения в примесной подсистеме и их влияния на спектроскопические и кинетические характеристики. Сказанное в большей мере относится к кристаллам ниобата лития стехиометрического состава, где ввиду отсутствия собственных дефектов возможность возникновения в решетке кристалла парных примесных центров резко возрастает [14].

¹Институт физических исследований НАН РА

- ² Армянский государственный педагогический университет им. Х. Абовяна
- 3 ЛМОПС, Университет Паул Верлан Мец и Супелек
- •Институт Жан Ламур. Университет Нанси, УПВМ. СНРС

272

Г. Г. Демирханян, Э. П. Коканян, М. Айлери, Г. Риниерт

Нерезонансное перераспределение энергии электронного возбуждения в

LiNbO₃:Yh³⁺

Исследованы нерезонансные механизмы безызлучательного перераспределения энергии электронного возбуждения (БПЭВ) в примесной подсистеме кристалла LiNbO₃.Yb³⁺. Рассчитаны вероятности элементарных актов нерезонансных механизмов БПЭВ, индуцированных прямым квадруполь-квадрупольным и косвенным дипольдипольным взаимодействиями примесных ионов, определены значения соответствующих критических радиусов при комнатной температуре. Показано. что нерезонансные механизмы могут привести к эффективному перераспределению энергии возбуждения в примесной подсистеме.

G. G. Demirkhanyan, E. P. Kokanyan, M. Aillerie, H. Rinnert

Non Resonance Redistribution of Electron Excitation Energy in LiNbO3: Yb³⁺

Non-resonance mechanisms of non-radiative transfer of electronic excitation energy (NEET) in impurity subsystem of LiNbO₃:Yb^{3*} crystal, are investigated. The elementary act probabilities of non-resonance NEET induced by direct quadrupole-quadrupole and indirect dipole-dipole interactions between Yb⁻¹ ions, as well corresponding critical radii at room temperature are calculated. It has been shown, that non-resonance inechanisms can lead to an effective redistribution of excitation energy in impurity subsystem.

Գ. Գ. Դեմիրիսանյան, Է. Պ. Կոկանյան, Մ. Այլերի, Հ. Ռիններտ

էլեկտրոնային գրգոման էներգիայի ոչ Ճառագայթային վերաբաշխումը LiNbOչ:Yb³⁺-ում

Հետազոտված են էլեկտրոնային զրգոման էներգիայի ոչ մառագայթային (ԳԷՈՃ) փոխանցման ոչ ոեզոնանսային մեխանիզմները LiNbO₅:Yb բյուրեղի խառնուրդային ենթահամակարգում։ Հաշվարկված են միմյանց հետ 1*b* իոնների ուղիղ քվադրուպոլ-քվադրուպոլ եւ անուղղակի դիպոլ-դիպոլ փոխազդեցություններով մակածված ոչ ԳԷՈՃ փոխանցման ոչ ոեզոնանսային մեխանիզմների տարրական ակտերի հավանականությունները, որոշված են նրանց կրիտիկական շառավիղները սենյակային ջերմաստիձաններում։ Յույց է տրված, որ ոչ ոեզոնանսային մեխանիզմները կարող են հանգեցնել խառնուրդային

ենթահամակարգում գրգոման էներգիայի արդյունավետ վերաբաշխմանը։

273

Литература

Demirkhanyan G. G., Kostanyan R B - Phys. Rev. 2008. B. 77 N 9. P 094305 094311.

2 Demirkhanyan G G., Demirkhanyan H. G., Kostanyan R. B - J. of Cont. Phys. (Arm. Ac. of Sci.), 2010. V. 45. N 5. P. 215-220.

3 Demirkhanyan G. G., Demirkhanyan H. G., Kostanyan R B - Armenian J. of Phys. 2010. V. 3 N 3. P. 263-271.

4 Babajanyan V. G., Demirkhanyan G. G., Gruber J. B., Kokanyan E. P., Kostanyan R B, Zandi B - Laser Phys. 2005. V. 15. N 11. P. 1150 - 1156

5 Агранович В. М., Галанин М. Д. – Перенос энергии электронного возбуждения в конденсированных средах. М. Наука. 1978. 378 с.

Kushida T. – J. of Soc. of Japan 1973. V.34 № 5 P 1318-1326. 6

Сафарян Ф. П., Цемирханян Г. Г. – ЖЭТФ 1984. Т. 86 № 6 С. 2170 – 2178 7.

8. Демирханян Г. Г., Сафарян Ф. П. –ДАН АрмССР 1986. Т.82. №4. С. 180–183.

9. Демирханян Г.Г. – Количественная теория оптических спектров редкоземельных ионов в лазерных кристаллах. Докт. дис. 2008. 255 с.

10. Demirkhanyan G. G., Kostanyan R. B. - Proc. SPIE. 2010. V. 7998, 799805; doi: 101117/12890880.

11. Кузьминов С. Электро-оптический и нелинейно-оптический кристалл ниобата лития. Т. І. М. Наука. 1987. 256 с.

12. Абрагам А. Блини Б Электронный парамагнитный резонанс переходных ионов. М. Мир. 1973. 483 с.

13. Демирханян Г. Г. – Сб. тр. конф. ЛФ-2006. Аштарак. 2007. С. 5 – 8.

14 Malovichko G., Bratus V., Grachev V., Kokanyan E. P. - Phys. Stat. Sol. (b). 2009 V 246 Issue I P 215-225.

