ZUBUUSUVH ФНЯПЬЮВПЬОСЬГН ИДФИВНО ИЧИЛЬНИИНАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИNATIONAL ACADEMY OF SCIENCES OF ARMENIAДОКЛАДЫДОКЛАДЫ

(355T 111

2011

No 1

МЕХАНИКА

УДК 5393

М. В. Белубекян, С. Р. Мартиросян

О дестабилизирующем влиянии конструкционного трения на устойчивость пластинки при сверхзвуковом обтекании и наличии сосредоточенных инерционных моментов на кромках

(Представлено академиком Г. Е. Багдасаряном 9/IV 2010)

Ключевые слова: устойчивость неконсервативных систем, конструкционное трение, сосредоточенные моменты, сверхзвуковое обтекание, панельный флаттер

Своеобразное влияние диссипативных сил на устойчивость распределенных неконсервативных систем представляет большой теоретический и практический интерес [1-7]. Это особенно касается расхождения между результатами, относящимися к системам с исчезающе малым затуханием, и к системам, затухание в которых с самого начала предполагалось равным нулю

Одно из проявлений своеобразного влияния исчезающе малого трения на устойчивость неконсервативных систем — скачкообразное падение критической нагрузки и частоты, а в случае обтекаемой потоком газа панели — критической скорости. Это явление, получившее название "парадокс дестабилизации", впервые было отмечено Г. Циглером [6] на примере двойного математического маятника, нагруженного на свободном конце "следящей" силой. Впоследствии эффект дестабилизации был обнаружен во многих механических и физических задачах. В.В. Болотин обнаружил зависимость устойчивости при исчезающе малом трении от соотношения между парциальными коэффициентами затухания и показал, что эффект дестабилизации отсутствует лишь при одинаковых парциальных коэффициентах затухания [1]. И.И. Жинжером [5] проведено общее исследование эффекта дестабилизации в неконсервативных системах вследствие исчезающе малого трения. Стройная теория для неконсервативных систем.

качественно и количественно описывающая их парадоксальное поведение под влиянием малого внутреннего и внешнего трения, изложена в [8,9]. Более или менее полное исследование эффекта дестабилизации, обусловленного влиянием реальных законов конструкционного трения на устойчивость неконсервативных систем, с точки зрения охвата интерпретирующих их моделей, проведено в работе [7] на примере консольной балки, нагруженной "следящей" силой.

Однако общие свойства этих систем исчерпывающе еще не изучены.

В данной работе на примере шарнирно опертой вдоль длинных кромок тонкой упругой удлиненной пластинки, обтекаемой сверхзвуковым потоком газа, исследуется эффект дестабилизации при различных моделях конструкционного трения в шарнирах в предположении наличия на закрепленных кромках сосредоточенных инерционных моментов.

1. Постановка задачи. Рассмотрим тонкую упругую удлиненную пластинку, которая в декартовой системе координат занимает область $0 \le r \le l$, $0 \le y \le b$, $-h \le z \le h$. Предполагается, что одна из длинных кромок r=0 имеет неподвижное шарнирное опирание, а другая r=l- свободное шарнирное опирание. Две другие кромки y=0, y=b свободны. Пластинка обтекается с одной стороны в направлении оси Ox сверхзвуковым потоком газа с невозмущённой скоростью V.

В целях упрощения будем полагать, что распределенная масса пластинки и силы сопротивления пренебрежимо малы. Тогда, в предположении справедливости гипотезы Кирхгофа и поршневой теории, уравнение малых изгибных колебаний около невозмущенной формы равновесия имеет вид [1,3]

$$\frac{\partial^4 w}{\partial x^4} + s^3 \frac{\partial w}{\partial x} = 0, \quad w = w(x, t), \quad s^3 = a_0 \rho_0 V D^{-1}, \tag{1.1}$$

где w-w(x,t) — функция прогиба точек срединной поверхности пластинки: a_0 — плотность невозмущенного потока газа; a_0 — скорость звука в невозмущенной газовой среде; D — цилиндрическая жесткость на изгиб

Будем полагать, что шарниры обладают вязкоупругими свойствами, а на шарнирно опертых кромках x=0, x=l приложены сосредоточенные инерционные моменты l_1 , l_2 соответственно. При этом, учитывая реальные законы конструкционного трения, возникающего в шарнирах, граничные условия запишутся в виде [1,3,10]

$$w = 0, \ D\frac{\partial^2 w}{\partial x^2} = I_1 \frac{\partial^3 w}{\partial x \partial t^2} + \varepsilon_1 \frac{\partial^2 w}{\partial x \partial t} - \delta_1 \frac{\partial^3 w}{\partial x^2 \partial t}, \ x = 0,$$

$$w = 0, \ D\frac{\partial^2 w}{\partial x^2} = I_2 \frac{\partial^3 w}{\partial x \partial t^2} + \varepsilon_2 \frac{\partial^2 w}{\partial x \partial t} - \delta_2 \frac{\partial^3 w}{\partial x^2 \partial t}, \ x = 1.$$

$$(1.2)$$

Здесь ε_1 , ε_2 , δ_1 , δ_2 — коэффициенты, характеризующие конструкционное трение в шарнирах [3,10].

Отыскивая решение задачи (1.1), (1.2) в виде $w(x,t) = f(x) \exp(\lambda t)$, приходим к следующей задаче на собственные значения:

$$f^{IV} + s^3 f' = 0, \ s^3 = a_0 \rho_0 V D^{-1};$$
 (1.3)

$$f = 0, f'' = \alpha_1 \lambda^2 f' + \beta_1 \lambda f' - \gamma_1 \lambda f'', x = 0,$$
 (1.4)

$$f=0, f''=-\alpha_2\lambda^2f'-\beta_2\lambda f'-\gamma_2\lambda f'', x=l,$$

$$\alpha_i = I_i D^{-1}, \ \beta_i = \varepsilon_i D^{-1}, \ \gamma_i = \delta_i D^{-1}; \ \alpha_i > 0, \ \beta_i > 0, \ \gamma_i > 0, \ i = 1, 2.$$
 (1.5)

Подставляя общее решение уравнения (1.3)

$$f(x) = C_1 + C_2 \exp(-sx) + C_3 \exp(sx/2) \cos(sx\sqrt{3}/2) + C_4 \exp(sx/2) \sin(sx\sqrt{3}/2)$$
 (1.6)

в граничные условия (1.4), получаем однородную систему алгебраических уравнений четвертого порядка относительно произвольных постоянных C_{i} = 1, 2, 3, 4, одновременно не равных нулю Далее, приравнивая нулю определитель этой системы, получаем алгебраическое уравнение четвертой степени относительно собственного значения λ , которое в безразмерных переменных в предположении $\alpha_1 \neq 0$ ($I_1 \neq 0$) имеет вид

$$\chi A(r)\mu_{1}^{4} + ((\chi \beta_{11} + \beta_{12})A(r) + (\chi \gamma_{11} + \gamma_{12})rB(r))\mu_{1}^{3} + ((1 + \chi + \beta_{11}\gamma_{12} + \beta_{12}\gamma_{11})rB(r) + \beta_{11}\beta_{12}A(r) + \gamma_{11}\gamma_{12}r^{2}C(r))\mu_{1}^{2} + ((\beta_{11} + \beta_{12}rB(r) + \beta_{12}rB(r)) + (1.7)$$

+
$$(\gamma_{11} + \gamma_{12})r^2C(r))\mu_1 + r^2C(r)\mu_1 + r^2C(r) = 0, \chi \in [0, \infty),$$

$$\chi = \alpha_2 \alpha_1^{-1}, \ \tau = sl;$$
 (1.8)

$$\mu_{1} = \lambda \sqrt{\alpha_{1} l}; \beta_{11} = \beta_{1} \sqrt{\alpha_{1}^{-1} l}; \beta_{12} = \beta_{2} \sqrt{\alpha_{1}^{-1} l}; \gamma_{11} = \gamma_{1} \sqrt{\alpha_{1}^{-1} l^{-1}}; \gamma_{12} = \gamma_{2} \sqrt{\alpha_{1}^{-1} l^{-1}}; (1.9)$$

$$A(r) = chr - ch(r/2)\cos(r\sqrt{3}/2) - \sqrt{3}sh(r/2)\sin(r\sqrt{3}/2), \qquad (1.10)$$

$$B(r) = 2sh(r/2)(ch(r/2) - \cos(r\sqrt{3}/2)),$$

$$C(r)chr - ch(r/2)\cos(r\sqrt{3}/2) + \sqrt{3}sh(r/2)\sin(r\sqrt{3}/2).$$

В предположении $\alpha_1=0$ ($I_1=0$) и $\alpha_2\neq 0$ ($I_2\neq 0$) или $\chi=\infty$ в соответствии с (1.8) алгебраическое уравнение относительно собственного значения λ имеет вид

$$(\beta_{21}A(r) + \gamma_{21}rB(r))\mu_2^3 + ((1 + \beta_{21}\gamma_{22} + \beta_{22}\gamma_{21})rB(r) + \beta_{21}\beta_{22}A(r) + (1.11)$$

$$+ \gamma_{21}\gamma_{22}r^2C(r))\mu_2^2 + ((\beta_{21} + \beta_{22})rB(r) + (\gamma_{21} + \gamma_{22})r^2C(r))\mu_2 + r^2C(r) = 0, \chi = \infty$$

$$\mu_2 = \lambda \sqrt{\alpha_2 l}; \ \beta_{21} = \beta_1 \sqrt{\alpha_2^{-1} l}; \ \beta_{22} = \beta_2 \sqrt{\alpha_1^{-1} l}; \ \gamma_{21} = \gamma_1 \sqrt{\alpha_2^{-1}}; \ \gamma_{22} = \gamma_2 \sqrt{\alpha_2^{-1} l^{-1}}. \ (1.12)$$

В работе [11] с помощью графоаналитических методов исследований показано, что

$$A(r) \succ 0, rB(r) \succ 0, C(r) \succ 0$$
 при всех $r \neq 0$ и $A(r) = B(r) = C(r) = 0$ при $r = 0$. (1.13)

Очевидно, что в соответствии с соотношениями (1.5) и (1.13) коэффициспты характеристических уравнений (1.7) и (1.11) положительны при всех г \neq 0. Это означает, что исследование поведения корней этих уравнений в зависимости от параметров задачи (1.1), (1.2) можно провести с помощью алгебраического критерия устойчивости Льенара — Шипара [12].

Заметим, что задача панельного флаттера (1.1), (1.2) в предположении отсутствия конструкционного трения ($\beta_1=\beta_2=\gamma_1=\gamma_2=0$) подробно исследована в работе [11]. Показано, что при $\chi\in[0;0.6)\cup(1.66;\infty)$ и $\chi=\infty$ возмущенное движение системы является устойчивым, а при $\chi\in[0.06;1.66]$ имеет место флаттерная неустойчивость. При этом значение критической скорости потока, приводящее к флаттерной неустойчивости, находится из соотношения

$$B^{2}(\tau) - 4\chi(1+\chi)^{-2}A(\tau)C(\tau) = 0, \ \chi \in [0.6; 1.66], \tag{1.14}$$

откуда следует, что она достигает минимального значения $V_{\mathsf{кр},\mathsf{min}} = V_{\bullet}$ при $\chi = 1$, а для остальных значений $\chi \in [0.6;1) \cup (1;1.66]$ $V_{\mathsf{kp}} \succ V_{\bullet}$. Значение V_{\bullet} , найденное в [11] с помощью графоаналитических методов исследований, после уточнения численными методами оказалось равным

$$V_{\bullet} \approx 170,95D(a_0\rho_0l^3)^{-1}, chi = 1.$$
 (1.15)

Отметим, что значение (1.15) не намного отличается от минимального значения критической скорости $V_{\rm xp\,min}\approx 178 D (a_0 \rho_0 l^3)^{-1}$, найденного A A. Мовчаном [13].

Для нескольких значений $\chi \in [0.6; 1.66]$ найдены соответствующие критические скорости потока $V_{\rm KD}$ (табл. 1).

Таблица 1

χ	1.0	0.9 и 1.1	0.71 и 1.41	0.65 и 1.55	06 и 166
$V_{\text{up}} \cdot D^{-1}(a_0 \rho_0 l^3)$	170,95	190.12	200.20	233.75	300.50

Рассмотрим некоторые частные случаи.

2.1. Пусть $\beta_1 \neq 0$, а $\beta_2 = \gamma_1 = \gamma_2 = 0$. При этом характеристические уравнения (1.7) и (1.11) запишутся, соответственно, в виде

$$\chi A(r)\mu_1^4 + \chi \beta_{11} A(r)\mu_1^3 + (1+\chi)rB(r)\mu_1^2 + \beta_{11}rB(r)\mu_1 + r^2C(r) = 0, \ \chi \in [0,\infty). \ (2.1)$$

$$\beta_{21}A(r)\mu_1^4 + \chi\beta_{11}A(r)\mu_1^3 + (1+\chi)rB(r)\mu_1^2 + r^2C(r) = 0, \ \chi = \infty. \tag{2.2}$$

Подставляя коэффициенты полиномов (2.1) и (2.2) в соответствующие условия критерия устойчивости Льенара — Шипара, получаем следующие соотношения:

$$\beta_{11}^2 \chi^2 r^2 A(\tau) (B^2(\tau) - A(\tau)C(\tau)) > 0, \ \chi \in (0, \infty),$$
 (2.3)

$$\beta_{21}r^2(B^2(r) - A(r)C(r)) \succ 0, \ \chi = \infty.$$
 (2.4)

Условия устойчивости (2.3) и (2.4) в силу соотношений (1.5), (1.9), (1.13) и (1.14) эквивалентны следующему условию:

$$(B^2(r) - A(r)C(r)) \succ 0$$
 при всех $r \neq 0, \beta_{1,1} \neq 0, \chi \in (0\infty)$ и $\beta_{2,1} \neq 0, \chi = \infty$ (2.5)

Отсюда следует, что критическое значение скорости потока $V_{\rm кр}$, приводящее к флаттерной неустойчивости, является решением уравнения (1.14) при $\chi=1$, а именно

$$(B^2(r) - A(r)C(r)) = 0$$
 при всех $\beta_1 \neq 0$ ($\beta_{1,1} \neq 0$, $\beta_{2,1} \neq 0$), $r \neq 0$, $\chi \in (0, \infty)$ и $\chi = \infty$. (2.6)

Это означает, что первое критическое значение скорости потока $V_{\rm кр}$. приводящее к флаттерной неустойчивости, одно и то же при всех $\beta_1 \neq 0$, $r \neq 0$, $\gamma \in (0, \infty)$ и $\gamma = \infty$ и равно значению критической скорости (1.15) при $\beta_1 \neq 0$ и $\gamma = 1$:

$$V_{\rm KD} = V_{\bullet} \approx 170,95 D(a_0 \rho_0 l^3)^{-1}, \ \beta_1 \neq 0, \ r \neq 0, \ \chi \in (0,\infty) \ \rm H \ \chi = \infty.$$
 (2.7)

Иными словами, в возмущенной системе при наличии исчезающе малого конструкционного трения $\beta_1 \neq 0$ в опорах при достижении скорости потока критического значения (2.7), не зависящего от значений β_1 ($\beta_1 \neq 0$) и χ ($\chi \in (0, \infty)$, $\chi = \infty$), возбуждаются флаттерные колебания.

Из сопоставления значений критических скоростей потока, найденных в предположении отсутствия трения ($\beta_1=0$) с самого начала (табл. 1), и соответствующих значений критических скоростей потока (2.7), найденных в предположении наличия исчезающе малого трения ($\beta_1\neq 0$), очевидно, что при всех $\chi\in(0,1)\cup(1,\infty)$ и $\chi=\infty$ наличие исчезающе малого трения β_1 приводит к эффекту дестабилизации — имеет место скачкообразное падение критической скорости потока. Наиболее ярко явление дестабилизации

наблюдается в случае, когда $\chi \in [0;0.6) \cup (1.66;\infty)$ и $\chi = \infty$. При этом падение критической скорости потока достигает максимального значения $\Delta V_{\rm kp} = V_{\bullet} \approx 170.95 D (a_0 \rho_0 l^3)^{-1}$, а при $\chi = 1.\Delta V_{\rm kp} = 0$. При $\chi \in [0.6;1) \cup (1;1.66) \Delta V_{\rm kp} \succ V_{\bullet}$. Например, при $\chi = 0.6$ и $\chi = 1.66$ $\Delta V_{\rm kp} \approx 129.55 D (a_0 \rho_0 l^3)^{-1}$.

Подставляя $\chi = 0$ в соотношение (2.1), получаем квадратное уравнение

$$rB(r)\mu_1^2 + \beta_{11}rB(r)\mu_1 + r^2C(r) = 0$$
, при всех $\beta_1 \neq 0$ ($\beta_{1,1} \neq 0$), $r \neq 0$, $\chi = 0$. (2.8)

В силу соотношений (1.5), (1.9) и (1.13) очевидно, что корни уравнения (2.8) имеют отрицательные вещественные части при всех $\beta_1 \neq 0$. Следовательно, при $\chi = 0$ и при всех $\beta_1 \neq 0$ возмущенное движение пластинки является устойчивым ($V_{\kappa p} = \infty$). А так как возмущенное движение пластинки в соответствии с замечанием, приведенным в разделе 1, является устойчивым и при $\beta_1 = 0$, то при $\chi = 0$ наличие конструкционного трения, характеризуемого параметром β_1 , не приводит к эффекту дестабилизации.

Таким образом, наличие конструкционного трения $\beta_1 \succ 0$ приводит к эффекту дестабилизации при всех $\chi \in (0,1) \cup (1,\infty)$ и $\chi = \infty$. Эффект дестабилизации отсутствует только при $\chi = 1$ и $\chi = 0$. При $\chi = 1$ критические значения скоростей потока как при $\beta_1 \neq 0$, так и при $\beta_1 = 0$ совпадают и равны $V_* \approx 170,95 D(a_0 \rho_0 l^3)^{-1}$. А при $\chi = 0$ наличие трения β_1 на поведение возмущенного движения пластинки не влияет.

2.2. Пусть
$$\gamma_1 \neq 0$$
, а $\beta_1 = \beta_2 = \gamma_2 = 0$.

Легко показать, что в этом случае в соответствии с критерием устойчивости Льенара — Шипара условие устойчивости при $\chi \in (0, \infty)$ имеет вид

$$\chi \gamma_{11}^2 r^4 C(r) (B^2(r) - A(r)C(r)) \succ 0, \ \gamma_1 \succ 0, \ \chi \in (0, \infty).$$
 (2.9)

откуда в силу условия (2.6) следует, что критическая скорость потока, приводящая к флатгерной неустойчивости, одна и та же для всех $\gamma_1 \succ 0$ ($\gamma_{11} \succ 0$), $\chi \in (0, \infty)$ и равна (2.7). Тем самым в соответствии с вышеизложенным и в этом случае наличие исчезающе малого конструкционного трения $\gamma_1 \succ 0$ при всех $\chi \in (0,1) \cup (1,\infty)$ приводит к эффекту дестабилизации.

Также легко показать, что при $\chi = 0$ и $\chi = \infty$ наличие трения $\gamma_1 \succ 0$ не влияет на устойчивость возмущенной системы.

Таким образом, в случае, когда $\gamma_1 \neq 0$, а $\beta_1 = \beta_2 = \gamma_2 = 0$, наличие исчезающе малого трения $\gamma_1 \succ 0$ приводит к эффекту дестабилизации при значениях $\chi \in (0,1) \cup (1,\infty)$, а при значениях $\chi = 0$ и $\chi = \infty$ эффект дестабилизации отсутствует.

Проведенные аналогичные исследования случаев, когда $\beta_2 \neq 0$, $\beta_1 = \gamma_1 = \gamma_2 = 0$ и $\gamma_2 \neq 0$, а $\beta_2 = \gamma_1 = 0$, показали, что наличие исчезающе малого конструкционного трения $\beta_1 \neq 0$ приводит к эффекту дестабилизации при

значениях $\chi \in [0,1) \cup (1,\infty)$, а наличие исчезающе малого конструкционного грения $\gamma_2 \neq 0$ — при $\chi \in (0,1) \cup (1,\infty)$. Отметим, что в случае, когда $\beta_2 \neq 0$, при $\chi = 0$ наблюдается эффект дестабилизации, а при $\chi = \infty$ наличие $\beta_2 \neq 0$ приводит к затуханию, в отличие от случая, когда $\beta_1 \neq 0$, при котором, наоборот, при $\chi = 0$ имеем затухание, а при $\chi = \infty$ наблюдается эффект дестабилизации. В случае, когда $\gamma_2 \neq 0$, влияние трения $\gamma_2 \neq 0$ на поведение возмущенной системы аналогично влиянию грения $\gamma_1 \neq 0$.

Численные результаты исследований приведены в табл. 2. Здесь символом $V_{\rm KP}=\infty$ обозначена устойчивость возмущенной системы.

Таблица 2

	$I_1=0,\ I_2\neq 0$	$I_1\neq 0,\ I_2=0$	$I_1 \cdot I_2 \succ 0, I_1 \neq I_2$	$I_1 = I_2 \neq 0$
$\beta_i = \gamma_i = 0, i = 1, 2$	$V_{\rm Kp}=\infty$	$V_{\rm xp}=\infty$	$V_{\rm xp} \succ V_{\bullet}$	$V_{\kappa p} = V_{\bullet}$
$\beta_1 \neq 0$	$V_{\text{kp}} = V_{\bullet}$	$V_{\rm KP}=\infty$	$V_{\text{KP}} = V_{\bullet}$	$V_{\kappa p} = V_{\bullet}$
$\beta_2 \neq 0$	$V_{\rm Kp}=\infty$	$V_{\kappa p} = V_{\bullet}$	$V_{\rm Rp} = V_{\bullet}$	$V_{\kappa p} = V_{\bullet}$
$\gamma_1 \neq 0$	$V_{\rm Kp}=\infty$	$V_{\rm Kp}=\infty$	$V_{\kappa p} = V_{\bullet}$	$V_{\kappa p} = V_{\bullet}$
$\gamma_2 \neq 0$	$V_{\rm Rp}=\infty$	$V_{ extsf{kp}}=\infty$	$V_{\kappa p} = V_{\bullet}$	$V_{\rm gp} = V_{ullet}$

Работа выполнена в рамках программы Λ^2 -NET-TEAM Advanced Aircraft Network for Theoretical Experimental Aeroelastic Modelling.

Институт механики НАН РА

М. В. Белубекян, С. Р. Мартиросян

О дестабилизирующем влиянии конструкционного трения на устойчивость пластинки при сверхзвуковом обтекании и наличии сосредоточенных инерционных моментов на кромках

Исследуется влияние исчезающе малого конструкционного трения на устойчивость шарнирно опертой вдоль длинных кромок удлиненной упрутой пластинки, обтекаемой сверхзвуковым потоком газа, в предположении наличия на закрепленных кромках сосредоточенных инерционных моментов Показано, что границы устойчивости, установленные для системы с исчезающе малым трением и для системы трение в которой с самого начала предполагалось равным нулю, не совпадают

Մ. Վ. Բելուրեկյան, Ս. Ռ. Մարդիրոսյան

Կոնսփրուկցիոն շփման անկայունացնող ազդեցությունը գերձայնային գազի հոսքում շրջահոս սալի կայունության վրա կենտրոնացված իներցիալ մոմենտների առկայության դեպքում

Դիտարկված է գերձայնային գազի հոսքում շրջահոս հոդակապահեն սալի կայունության ինկրիրը. որի երկար եզրերին առկա են կենտրոնացված իներցիալ մոմենտներ, իսկ հոդակապերում հաշվի է առնված շփումը։ Ֆույց է տրված, որ կայունության սահմանները շփման առկայության եւ բացակայության դեպքերում տարբեր են։

M. V. Belubekyan, S. R. Martirosyan

On the Destabilizing Effect of Constructive Friction on the Stability of the Plate in Supersonic Flow and the Presence of Concentrated Inertial Moments on the Edges

The influence of a vanishingly small conctructive friction on the stability of a hinged along the long edges of an elongated elastic plate, supersonic gas flow are investigated, the assumption that there is fixed-represented at the edges of the lumped inertia of the moments. It is shown that the stability boundaries established for the system with vanishingly small friction and for a system in which the friction from the beginning assumed to be zero, do not coincide.

Литература

- 1. Болотин В В Неконсервативные задачи теории упругой устойчивости М. Наука 1961. 329 с.
 - 2. Bolotin V.V., Zhinzher N.I. Int. J. Solids Structures 1969 V. 5. P 965-989,
- 3. Пановко Я Г., Губанова И И. Устойчивость и колебания упругих систем М Наука 1987. 352 с.
 - 4 Пановко Я Г., Сорокин С.В. Изв. АН СССР. МТТ. 1987. N 5. C. 135-139
 - 5 Жинжер Н.И. Изв АН СССР МТТ. 1968 N 3. С 44-49.
- 6. ZieglerH Die Stabilitatskriterien der Elastomechanik Ing.-Arch. 1952. Вd.20 Н 1 (Циглер Г. Основы теории устойчивости конструкций. М. Мир. 1971. 192 с.)
- 7. Белубекян М.В., Казарян К.Б., Мартиросян С.Р. Доклады НАН Армении 2007. Т. 107. N 2. C. 167-172.
 - 8. Кириллов О.Н. ДАН РФ. Механика 2004. Т. 395. N 5. C. 614-620.
- 9. Кириллов О.Н., Сейранян А.П. Изв. АН РФ. Прикладная математика и механика. 2005. Т. 69. Вып. 4. С. 584-611.
 - 10. Ржаницын А.Р. Изв. АН АрмССР Механика 1985. T. 38. N 5 C. 33-44
- 11. Белубекян М.В., Мартиросян С.Р. Мат. методи та фіз.-мех. поля 2006. Т 49 N 3. C. 162-167.
 - 12 Гантмахер ФР. Теория матриц. М. Наука 1967. 576 с.
 - 13. Мовчан А.А Изв. АН СССР ПММ 1956 Т 20 С. 211-212.