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Introduction. The geometric characterization (GCn) for multivariate inter-
polation is equivalent to the existence of a Lagrange formula with fundamental 
polynomials that are products of n linear factors. The Gasca-Maeztu conjecture 
for /?“ is: for any GCn set in Rk there is a hyperplane (called maximal hyperplane) 
passing through dirnUk 1 points of that set. The conjecture for k = 2 has only been 
proved for degrees n < 1 (see e.g. [1], [2], [3]) and for k = 3 only for degrees n < 2 
[4]. The maximal hyperplanes play important role in the study of GCn sets. In this 
paper we give a precise lower estimate for the number of maximal planes for GC2 
sets in R3. ■ /

1. Auxiliary’ Results. Let FI* nn(/?A) be the space of all polynomials in k 
(n 4֊ k \

]. Let us
A: J

fix any finite set X = {z(1\C Rk as the set of knots of interpolation
and pose the

Lagrange interpolation problem. Given X = {z(I\z(2\... C Rk and any 
values Ci, c2,... , cdl find p € fl^ such that p(x^) — Cj, j = 1,2,... , d.

Every polynomial p of degree not exceeding n can be written in the form
p(t) V aaxa, and the interpolation conditions give rise to the following system 

;«l<n

of d equations and unknowns:

p(x°>) = yr aa(x^)a = Cj, j = 1,2,... , d, 
|a|<n

(1.1)
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where an are the unknowns.
An interesting problem in multivariate interpolation is to infer the existence 

and uniqueness of the solution of the Lagrange interpolation problem from the 
distributions of the points in X. This leads to the following

Definition 1.1. We say that a set X C Rk is Y\^-correct, if the Lagrange inter­
polation problem for X and fl* has a unigue solution for any values cj,c2....... cd.

From (1.1) we get that a necessary condition for a set X to be I^-correct is

(ri 4՜ A* i
I. In that case the linear system (1.1) has the same number of 

A: 1
equations and unknowns. Hereon we assume that this condition holds. Then the 
set X is II*-correct, if and only if there exists no p G 11* vanishing at all the points 
of X. This condition means geometrically that no algebraic hypersurface of degree 
not exceeding n passes through all the points of X.

We say that p e FI* is a fundamental polynomial or Lagrange polynomial 
associated to the knot A = x(i) G X, if p(j№) = 6tJ, 1 < j < d, where 6tj is the symbol 
of Kronecker. From now on we will denote the above fundamental polynomial by

Pa ‘=P*-
Note that the set X is Il*-correct if and only if all interpolation knots have 

fundamental polynomials. Furthermore, in the case of correctness the solution p 
of the Lagrange interpolation problem can be expressed by the Lagrange formula 

p- E p(?0’) • pj.
J=1

Remark 1.1. Any fundamental polynomial is of exact degree n.
Indeed, let h be an arbitrary hyperplane (degh = 1) vanishing at .4. If deg(p*A) < 

n, then hpA e 11* vanishes at X, contradicting the correctness of X.
Now let us consider the construction of correct sets provided by Chung and

Yao.
Definition 1.2. (See [5]) A set of knots XcRk,#X = d = I " is said to 

\ rv /
satisfy the geometric characterization GCn, or is a GCn set for short, if for all .4 € A 
there exist (at most) n affine functions h*, i - 1,2,... ,n, such that the union of all 
hyperplanes hf = 0 contains all knots of X \ {A}, but not the knot .4. We say that 
{\4 = 0|i = 1, 2,... ,n} is the set of hyperplanes used by the knot A.

Henceforth let us denote by h both the hyperplane and the affine function 
which takes part in the equation of the hyperplane.

The GCn condition is equivalent to the existence of all fundamental polyno- 
n

mials in form of products of linear factors: p\ = 7 11 ՛ where 7 is a constant

Therefore, if X satisfies the GCn condition, then it is n*-correct. So the set of h> 
perplanes used by a knot must be unique, and by Remark 1.1, it contains exact!} 

n elements.
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2. Conjectures concerning GC sets. In 1982 Gasca and Maeztu made the 
following conjecture.

GAZ-conjecture. (See (6j) For every GCn set X C R2 there is a line passing 
through, n 4֊ 1 nodes of X.

A line containing n 4- 1 nodes of X is called a maximal line. So far the GM- 
conjecture has been verified only for n < 4 (see [1], [2]. [3]). Actually, the GM- 
conjecture states that every Chung-Yao set (GC set) is a particular case of another 
well-known construction, called Berzolari-Radon: there exist lines Zo,Zi,... , Zn, such 
that Z։ \ (Zo U ... U Z։_]) contains exactly n 4- 1 — i nodes (see e.g. [3]). Carl de Boor 
generalized the GAf-conjecture for Rk:

GAf*-conjecture. (See [7]) For every GCn set X C Rk there is a hyperplane 
passing through dimEI*՜1 knots of X.

A hyperplane containing knots of X is called a maximal hyperplane.
We will use the following:
Proposition 2.1. ([7]) A hyperplane is maximal if and only if it is used by all 

the knots not contained in it.
Note that the case of k = 2 was proved in [8).
In the plane, Carnicer and Gasca have strengthened the GA/-conjecture by 

proving the following:
Theorem 2.1. ([8]) If GM-conjecture is true, then there are at least three max­

imal planes.
On the basis of this result C. de Boor made the following conjecture:
CGk-conjecture. ([7]) For every GC set in Rk there are at least k 4֊ 1 maximal 

hyperplanes. ,.,u &
He also brought a counterexample, which shows that this conjecture is not 

true (see [7]). J
In [4] it was proved that GA/t-conjeclure is true for II^. Which also shows that 

the following natural generalization of Theorem 2.1 for k = 3 is not true:
• If GMk-conjecture is true, then there are at least k 4- 1 maximal hyperplanes.
In the next section we prove that there exist at least 3 maximal planes for any 

GC2 set in R\ The counterexample of C. de Boor (see also the example al the end 
of the paper) shows that this result can not be improved.

3. The maximal planes of GC2 set in R\ From now on let us consider the GC2 
(2 4- 3 \

I = 10. In [4] it was proved that in this case (i.e., for 
3 J

k - 3, n = 2) the GM/j-conjecture is true. In other words there is a plane (maximal 
plane) passing through dimD? = 6 knots of X. Denote this maximal plane by hntax. 
In [4] also it was mentioned that the 6 knots of the maximal plane satisfy the GC? 
condition in R2. We will use the following result (see [4], Lemma 3.1 and Lemma
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3.2):
Lemma 3.1. Let a set of knots X C R3 satisfy GCn. Then the following hold:
(i) If a line I passes through n + 1 knots of X, then any knot not lying on I uses 

a plane passing through the line I.
(ii) There is no line passing through n + 2 knots of X.
Definition 3.1. We say that the distinct lines ZiJ2l... Jq in the plane are in 

general position, if no two of them are parallel and no three are concurrent.
Definition 3.2. We say that six nodes in the plane have /^-structure with three 

lines in general position if three nodes are the vertices of the triangle, formed by the 
lines, and the remaining three lie one by one on the lines (see Fig. 1).

Fig. 1. A-structure.

We will use the following:
Proposition 3.1. The nodes of any GC2 set in R2 have ^-structure.
Proof. Since the set of six points satisfies GC2 in R՜ then any five of them lie 

on two lines. Hence there are three nodes, for example /LCi.B, lying on a line. 
The remaining nodes: A\՝By՝C are non-collinear (see Fig. 1). Consider the 2 lines 
used by A. It is evident that one of these lines should pass through exactly 1 node 
from Ci,B and 2 nodes from A^B^C. Without loss of generality assume that the 
line passes through the nodes B,A\,C. Finally consider the node B. By the same 
way we get the third line passing through 3 nodes.O

Now we have the following distribution of 10 knots of X: 6 knots are on the 
plane hmax and have A-structure (by Proposition 3.1), and the remaining 4 called
free knots not contained in

Re II ark 3.1. The 4 free knots are not coplanar. In particular no three of them
are collinear.

Indeed, since otherwise the product of hmax and the plane, which passes 
through the 4 free knots, will be a non-trivial polynomial from 1U vanishing at 
all knots of X.

Let us fix one of three lines passing through three knots of hmaz dt note 

by /*. We have
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Lemma 3.2. Assume that there is no other maximal plane except hmaX‘ Then 
there exists a line passing through two free knots and one of three knots of hmax\l*.

Next, we have the following:
Proposition 3.2. There are at least two maximal planes for any GC2 set X in 

R3.
The proof of Proposition 3.2 is based on Lemma 3.1 and Lemma 3.2.
Now let us formulate the basic result of the paper concerning the number of 

maximal planes. .՛**.,• ■•! ՛,
Theorem 3.1. There exist at least three maximal planes for any GC2 set X in 

R3. ' h 1 n-
The proof of Theorem 3.1 is based on Proposition 3.2 and Lemma 3.1. Also 

we use the fact that two maximal planes for X intersected by a line containing 3 
knots. Indeed, otherwise if they have < 2 common knots, then we will have all the 
knots on these 2 planes, which contradicts the correctness of X.

Let us mention that in the case k = 2 any node uses a maximal line if the GM- 
conjecture is true (see [9], Proposition 2). In contrast with this the counterexample 
of C. de Boor shows that there is a knot (namely, the knot A" in the forthcoming 
Fig 3) which is not using a maximal plane. In addition we have

Corollary 3.1. For any GC2 set in R3 at most one knot is not using a maximal 
plane in it's fundamental polynomial.

Proof: By Theorem 3.1 there are at least 3 maximal planes for any GC2 set 
in R Consider first the case of 4 maximal planes. Then for each knot there is 
a maximal plane not passing through it, since according to [7], Fact 14(v), the 
intersection of 4 maximal planes is empty. So by Proposition 2.1 each knot uses 
a maximal plane. If there are 3 maximal planes then they intersect at exactly one 
knot (see [7|, Fact 14(iv|), which consequently is not using a maximal plane. For 
any other knot there is a maximal plane not passing through it. This in view ol 
Proposition 2 1 completes the proof. 0

4. Examples. For the sake of completeness let us bring two examples, which 
show that the result of Theorem 3.1 can not be improved. Note that these exam­
ples essentially were introduced by Carl de Boor [7] for seemingly more specific 
construction.

Example 1. Let us consider the following generalization of the A-structure 
for 10 knots in R\ Suppose we have four planes in general position, i.e., any three 
planes intersect at exactly one point, and the four are not concurrent. Choose four 
knots that are the vertices of the pyramid, formed by the planes, and the remaining 
six knots, so called non-vertex, are lying one by one point on the lines containing 
the edges of the pyramid (see Fig. 2).

This set of knots is a GC2 set in R3. Indeed, it is easily noticed that for any non­
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vertex knot there are two maximal planes not passing through it and containing 
all other knots. Then for each fixed vertex of the pyramid there is a maximal plane 
not passing through it. The second plane it uses is the one passing through the 
remaining three knots.

Fig. 2. A GC2 set with 4 maximal planes.

Fig. 3. A GC2 set with 3 maximal planes.

Notice that in this example we have four maximal planes, which are the faces 
of the pyramid.

Example 2. Let us fix any face of the pyramid, for example the base, and move 
one of the non-vertex knots to the line passing through the remaining two non­
vertex knots in the same face (see Fig. 3). In this case we have only three maximal 
planes. Besides the set of knots is also a GC2 set in R . Indeed, for all knots except 
A" there is a maximal plane not passing through it. The second plane they use is 
the plane passing through the remaining three knots. Finally, A uses the same 
planes as in the first example but containing now 4 and 5 knots, respectively.

So we get a GC2 set in R3, which has exactly three maximal planes. This 
proves that the result of Theorem 3.1 can not be improved.

Yerevan State University
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G. A, Ktryan

On a Conjecture on Lagrange Interpolation in J?3

The geometric characterization (GCn) for multivariate interpolation is equivalent to 
the existence of a Lagrange formula with fundamental polynomials that are products of n 
linear factors. The Gasca-Maeztu conjecture for Rk is: for any GCn set in Rk there is a 
hyperplane (called maximal hyperplane) passing through t/imflj՜1 points of that set. The 
maximal hyperplanes play important role in the study of GCn sets. In this paper we give 
a precise lower estimate for the number of maximal planes for GC2 sets in R3.

Գ. Ա. Քթրյան 

/?֊ում Լազրանժի միջարկման վերաբերյալ մի վարկածի մասին

Բազմաչափ միջարկման համար երկրաչափական բնութագիրը ((ՅՀ7Ո) համարժեք է 

Լագրանժի բանաձեւի գոյությանը, որի բոլոր ֆունդամենտալ բազմանդամները ո գծային 

արտադրիչների արտադրյալ են: /?^֊ում Գասքա-Մաեզթոփ վարկածը հետևւյալն է. Rk- 
ում ցանկացած ՇՇՈ բազմության համար գոյություն ունի հիպերհարթություն (այն կոչվում 
է մաքսիմալ հիպերհարթություն), որն անցնում է այդ բազմության ժւրոՈ^՜1 կետերով: 

Մաքսիմալ հիսլերհարթություևները կարեւոր դեր են խաղում GCՈ բազմությունների ուսում­
նասիրության մեջ: Այս աշխատանքում մենք տալիս ենք /?3-ում ՇՇշ բազմության մաքսիմալ 

հարթությունների քանակի ճշգրիտ ստորին գնահատականը:

Г. А. Ктрян

О гипотезе, относящейся к интерполяции Лагранжа в /Г5

Геометрическая характеристика (ССП) для многомерной интерполяции экви­
валентна существованию формулы Лагранжа, фундаментальные полиномы которой 
являются произведением п множителей. Гипотеза Гаска-Маезту в Нк следующая: для 
любого множества ССп в R1' существует гиперплоскость (называется максимальной 
гиперплоскостью), которая проходит через б/гтП^՜1 точек этого множества. Макси­
мальные гиперплоскости играют важную роль в изучении множеств ССп. Приведена 
точная нижняя оценка количества максимальных плоскостей для множества ССг в 
R3. . >

28



References

1. Busch J. R. - Un. Mat. . Argentina. 1990. V. 36. P. 33-38.
2. Carnicer J. M., Gasca M. - Rev. R. Acad. Cience. Exactas Fis. Nat. (Esp.) Ser 

A Mat. 2001. V. 95. P. 145-153.
3. Hakopian H., Jetter K., Zimmermann G. - J. Approx. Theory. 2009. V. 159 N 2 

doi: 10. 1016. /j. jat. 2009.04.006. P. 224-242.
4. Apozyan A., Avagyan G., Ktryan G. • EJA. 2010.
5. Chung K. C., Yao T. H. - SIAM J. Numer. Anal. 1977. V. 14 P. 735-753.
6. Gasca M., Maeztu J. I. - Numer. Math. 1982. V. 39. P 1-14.
7. de Boor C. - Numer. Alg. 2007. P. 113-125.
8. Carnicer J. M., Gasca M. - Curve and Surface Design: Saint-Malo. 2002. (Tom 

Lyche, Marie-Laurence Mazure, and Larry L. Schumaker Eds.). 2003. P. 11-30.
9. Carnicer J. M., Gasca M. - Kluwer Academic Publishers. Printed in the Nether­

lands. 2002.a

29


