ZUBUUSUVP ФРЅПРОВПРОВЕРР ЦОФИЗРО ИЧИФЕИРИНАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИNATIONAL ACADEMY OF SCIENCES OF ARMENIAДОКЛАДЫОКЛАДЫ

 $N_{\text{o}} = 2$

MATHEMATICS

УДК 517.984

L. Z. Gevorgyan

On the Minimal Norm of a Linear Operator Pencil

(Submitted by academician V.S. Zakaryan 30/XI 2009)

Key words: linear operator pencil, minimal norm, numerical radius, reverse inequalities

- **0.** Let A and B be linear bounded operators, acting in a Hilbert space $(\mathcal{H}, \langle \bullet, \bullet \rangle)$ and t be a complex number. Denote by SpA, W(A) and w(A) respectively the spectrum, the numerical range and the numerical radius of A. The vector-function A+tB is known as the pencil, generated by A and B. In some problems the least value of $\|A+tB\|$ plays very important role. Evidently there is at least one complex number t_0 such that $\inf_{t \in \mathbf{C}} \|A+tB\| = \|A-t_0B\|$. In what follows we investigate this problem for a special operator B, find the best value t_0 , consider the problem in greater details for three particular cases and prove some inequalities.
 - **1. Proposition 1.** Let the operator B be one-to-one. Then

$$\inf_{t \in \mathbf{C}} \|A - tB\| = \sup_{\|x\| = 1} \sqrt{\|Ax\|^2 - \frac{|\langle Ax, Bx \rangle|^2}{\|Bx\|}}.$$
 (1)

Proof . Let $a,b\in\mathcal{H}$ be two non-zero elements. From elementary properties of the Hilbert space

$$\inf_{t \in \mathbf{C}} \|a - tb\|^2 = \|a\|^2 - \frac{|\langle a, b \rangle|^2}{\|b\|^2}.$$

Putting a = Ax, b = Bx, where x is arbitrary non-zero element from \mathcal{H} , we get

$$\inf_{t \in \mathbf{C}} \|(A - tB)x\|^2 = \|Ax\|^2 - \frac{|\langle Ax, Bx \rangle|^2}{\|Bx\|^2}.$$

According to a theorem of Asplund and Ptak [1]

$$\sup_{\|x\|=1} \inf_{t \in \mathbf{C}} \|(A - tB)x\| = \inf_{t \in \mathbf{C}} \sup_{\|x\|=1} \|(A - tB)x\|,$$

and it completes the proof.

To find the best value t_0 we impose an additional restriction on B. Suppose that B is bounded from below, i.e. $||Bx|| \ge \delta ||x||$, $\delta > 0$. Let $\{x_n\}$ be a sequence of unit vectors, approximating the supremum in (1). Then

$$\left| \frac{\langle Ax_n, Bx_n \rangle}{\|Bx_n\|} - t_0 \|Bx_n\| \right|^2 = \frac{|\langle Ax_n, Bx_n \rangle|^2}{\|Bx_n\|^2} - 2 \operatorname{Re} \langle Ax_n, t_0 Bx_n \rangle + |t_0|^2 \|Bx_n\|^2 =
= \|(A - t_0 B) x_n\|^2 - \|Ax_n\|^2 + \frac{|\langle Ax_n, Bx_n \rangle|^2}{\|Bx_n\|^2} \mathbf{6}
\mathbf{6} \|A - t_0 B\|^2 - \|Ax_n\|^2 + \frac{|\langle Ax_n, Bx_n \rangle|^2}{\|Bx_n\|^2} \to 0.$$

As the operator B is bounded from below, the inequality

$$\left| \frac{\langle Ax_n, Bx_n \rangle}{\|Bx_n\|^2} - t_0 \right| \le \frac{1}{\delta} \left| \frac{\langle Ax_n, Bx_n \rangle}{\|Bx_n\|} - t_0 \|Bx_n\| \right|$$

is satisfied. Thus,

$$t_0 = \lim_{n \to \infty} \frac{\langle Ax_n, Bx_n \rangle}{\|Bx_n\|^2}.$$
 (2)

For $B=A^*$ we get $\inf_{t\in \mathbf{C}}\|A-t_0A^*\|=\sup_{\|x\|=1}\sqrt{\|Ax\|^2-\frac{|\langle A^2x,x\rangle|^2}{\|A^*x\|^2}}$. If the operator A is normal, then for any $x\in \mathcal{H}$ the equality $\|A^*x\|=\|Ax\|$ is satisfied. In this case the condition, imposed on B may be dropped. Indeed, the norm in the left hand side may be calculated, taking vectors, belonging to the orthogonal complement of the null-space of A. Hence, A may be assumed to be one-to-one. If $\inf_{t\in \mathbf{C}}\|A-tA^*\|=0$, then $A=t_0A^*$, otherwise the sequence $\{\|Ax_n\|\}$ is bounded from below. Anyway, we get the following result (cf. [2], (2.10)).

Proposition 2. For any normal operator A

$$\inf_{t \in \mathbf{C}} \|A - t_0 A^*\| = \sup_{\|x\| = 1} \sqrt{\|Ax\|^2 - \frac{|\langle A^2 x, x \rangle|^2}{\|Ax\|^2}}.$$

In this case

$$t_0 = \lim_{n \to \infty} \frac{\langle A^2 x_n, x_n \rangle}{\|A x_n\|^2}.$$

As $|\langle A^2x_n, x_n\rangle| = |\langle Ax_n, A^*x_n\rangle| \le ||Ax_n|| \cdot ||A^*x_n|| = ||Ax_n||^2$, we may deduce the inequality $|t_0| \le 1$. Evidently, for a Hermitian (or skew-Hermitian) operator $A \inf_{t \in \mathbf{C}} ||A - tA^*|| = 0$ and $|t_0| = 1$.

Example 1. Let

$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \ \lambda_1, \lambda_2 \in \mathbf{C}.$$

The vector, maximizing the right hand side in (1) has the coordinates

$$x = \left\{ \frac{\sqrt{|\lambda_2|}}{\sqrt{|\lambda_1| + |\lambda_2|}}; \frac{\sqrt{|\lambda_1|}}{\sqrt{|\lambda_1| + |\lambda_2|}} \right\}. \tag{3}$$

We have

$$\inf_{t \in \mathbf{C}} \|A - tA^*\| = 2 \frac{|\operatorname{Im}(\overline{\lambda_1}\lambda_2)|}{|\lambda_1| + |\lambda_2|}.$$

If $\lambda_1 = 1$, $\lambda_2 = i$, we get $\inf_{t \in \mathbf{C}} ||A - tA^*|| = 1$ and $t_0 = 0$.

Further two particular cases of the special interest are considered. For the first one we put B = I, where I is the identity operator.

Proposition 3. For any operator A

$$\inf_{t \in \mathbf{C}} ||A - tI|| = \sup_{\|x\| = 1} \sqrt{||Ax||^2 - |\langle Ax, x \rangle|^2}.$$
 (4)

The proof will be omitted. For this case

$$t_0 = \lim_{n \to \infty} \langle Ax_n, x_n \rangle. \tag{5}$$

Evidently $t_0 \in \overline{W}(A)$, where the upper bar denotes the closure of the set.

Remark 1. The right hand side of (4) is known as the square root of the Bjork-Thomee constants of A (see [3]), where it has been shown that it coincides with Mirsky's constant

$$M(A) = \sup\{|\langle Au, \nu \rangle| : ||u|| = ||\nu|| = 1, \ \langle u, \nu \rangle = 0\}.$$

From formula (4) follows Dragomir's inequality ([4], 3.11)

$$||A||^2 - w^2(A) \le \inf_{t \in \mathbf{C}} ||A - tI||^2.$$
 (6)

Let A be the operator from Example 1. The supremum in the right hand side of (4) is attained on the element $x = \left\{ \frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2} \right\}$. Thus,

$$||Ax||^2 - |\langle Ax, x \rangle|^2 = \frac{|\lambda_1|^2 + |\lambda_2|^2}{2} - \frac{|\lambda_1 + \lambda_2|^2}{4}.$$

According to the parallelogram law this difference is equal to $\frac{|\lambda_1 - \lambda_2|^2}{4}$, so $\inf_{t \in \mathbf{C}} \|A - tI\| = \frac{|\lambda_1 - \lambda_2|^2}{2}.$ The best value is $t_0 = \frac{\lambda_1 + \lambda_2}{2}.$ Remark 2. For the operator defined by the matrix

$$A = \begin{pmatrix} \lambda_1 & \lambda_3 \\ 0 & \lambda_2 \end{pmatrix}, \ \lambda_1, \lambda_2, \lambda_3 \in \mathbf{C}$$

in [5] is proved that

$$\inf_{t \in \mathbf{C}} ||A - tI|| = \frac{|\lambda_3| + \sqrt{|\lambda_1 - \lambda_2|^2 + |\lambda_3|^2}}{2}.$$

According to Schur decomposition $A = UTU^{-1}$, where U is unitary and T is triangular. As the operator norm is unitary invariant, the last formula settles the general case in two dimensional space.

The second problem is related with $m(A) = \inf_{t \in \mathbf{C}} \|I - tA\|$. This expression occurs when a Hilbert space operator equation Ax = b is solved by Richardson stationary iterations ([6]). It defines the rate of convergence of iterations to the solution of the equation. Evidently $m(A) \leq 1$ and a non trivial situation arises when m(A) < 1. Formula $A^{-1}=t\sum_{n=0}^{\infty}(I-tA)^n$ shows that in this case A is invertible. **Proposition 4.** For any operator A

$$\inf_{t \in \mathbf{C}} \|I - tA\| = \sup_{ax \neq \theta} \sqrt{1 - \frac{|\langle Ax, x \rangle|^2}{\|Ax\|^2 \cdot \|x\|^2}}.$$
 (7)

The proof may be found in [6]. Denote

$$p(A) = \inf_{Ax \neq \theta} \frac{|\langle Ax, x \rangle|}{\|Ax\| \cdot \|x\|}.$$
 (8)

According to [6] for any operator A

$$m^2(A) + p^2(A) = 1. (9)$$

We get

$$t_0 = \lim_{n \to \infty} \frac{\langle x_n, Ax_n \rangle}{\|Ax_n\|^2},\tag{10}$$

where $\{x_n\}$ is a sequence of unit vectors, approximating the infimum in (8). Let $y_n = Ax_n$. Then $\lim_{n \to \infty} \frac{\langle x_n, Ax_n \rangle}{\|Ax_n\|^2} = \lim_{n \to \infty} \frac{\langle A^{-1}y_n, y_n \rangle}{\|y_n\|^2}$, meaning that $t_0 \in \overline{W}(A^{-1})$. **Proposition 5.** For any operator A

$$\inf_{t \in C} ||A - tI|| \le ||A|| \cdot \inf_{t \in C} ||I - tA||. \tag{11}$$

Proof. Let x have unit norm. Then $|\langle Ax, x \rangle| \geq p(A) ||Ax||$ and

$$||Ax||^2 - |\langle Ax, x \rangle|^2 \le (1 - p^2(A))||Ax||^2.$$

Calculating the supremum of the both sides, we get (11).

Corollary. If
$$\inf_{t \in \mathbf{C}} \|A - tI\| = \|A\|$$
, then $\inf_{t \in \mathbf{C}} \|I - tA\| = 1$.

Example 3. Let $\lambda_1 = 2$, $\lambda_2 = -1$ in Example 1. Then $\inf_{t \in \mathbf{C}} \|I - tA\| = 1$ and $\inf_{t \in \mathbf{C}} \|A - tI\| = 1.5 < \|A\|$, so conditions $\inf_{t \in \mathbf{C}} \|I - tA\| = 1$ and $\inf_{t \in \mathbf{C}} \|A - tI\| = \|A\|$ are not equivalent.

Recalling (6),(11), we arrive at Dragomir's another inequality

$$||A||^2 - w^2(A) \le ||A||^2 \inf_{t \in \mathbf{C}} ||I - tA||^2.$$

For the above considered two dimensional normal operator the vector, maximizing the right hand side of (7) is defined [7] by formula (3),

$$p = \frac{\sqrt{|\lambda_1 \lambda_2|}}{|\lambda_1| + |\lambda_2|} |\operatorname{sgn} \overline{\lambda_1} + \operatorname{sgn} \overline{\lambda_2}|,$$

$$t_0 = \frac{\operatorname{sgn} \overline{\lambda_1} + \operatorname{sgn} \overline{\lambda_2}}{|\lambda_1| + |\lambda_2|}$$

$$M = \frac{|\lambda_1 - \lambda_2|}{|\lambda_1| + |\lambda_2|}.$$

and

As $||A|| = \max\{|\lambda_1|, |\lambda_2|\}$, the equality $|\lambda_1| = |\lambda_2|$ implies that the both sides of inequality (11) have the same value.

Now we suppose that $\inf_{t \in \mathbf{C}} ||I - tA|| < 1$. Then

$$\inf_{t \in \mathbf{C}} \|A - tI\| = \inf_{\alpha \neq 0} \frac{\|I - \alpha A\|}{|\alpha|} \le \frac{1}{|t_0|} \inf_{t \in \mathbf{C}} \|I - tA\|, \tag{12}$$

where t_0 is defined by (10).

When $\lambda_1, \lambda_2 > 0$, inequality (12) is reduced to an equality.

By the same way

$$\inf_{t \in \mathbf{C}} \|I - tA\| = \inf_{\alpha \neq 0} \frac{\|A - \alpha I\|}{\|\alpha\|} \le \frac{1}{|t_0|} \inf_{t \in \mathbf{C}} \|A - tI\|, \tag{13}$$

where t_0 is defined by (5).

2. It is interesting to note that considered above minimal norms for some operators have interesting geometrical meanings. Let for any complex t the norm of the operator A - tI and its spectral radius r(A - tI) coincide. Then

$$\inf_{t \in \mathbf{C}} ||A - tI|| = \inf_{t \in \mathbf{C}} \sup_{z \in SpA} |z - t|.$$

The expression in the right hand side is the radius of the smallest circle $C(z_0,R)$ containing the spectrum SpA of A. Hence the minimal norm of A-tI equals the radius R of this circle and the optimal parameter t_0 is the affix z_0 of the circle's center. It is known [7] that for any compact subset $F \subset C$ the smallest circle exists, is unique and contains on its boundary at least two points, belonging to F.

For the second problem we have

$$\inf_{t \in \mathbf{C}} \|I - tA\| = \inf_{t \in \mathbf{C}} \sup_{z \in SpA} |tz - 1| = \inf_{z_0 \in \mathbf{C}} \frac{1}{|z_0|} \sup_{z \in SpA} |z - z_0| = \inf_{z_0 \in \mathbf{C}} \frac{R}{|z_0|},$$

so we look for a circle, containing SpA and having the least $\frac{R}{|z_0|}$ ratio among all circles, satisfying this condition. This circle exists [8] if and only if the coordinate system's origin does not belong to the convex hull of SpA.

Using formulas (8) and (4), we can establish Cauchy-Bunyakovsky-Schwarz type reverse inequalities.

Example 4. Let
$$A = diag\{\lambda_1, \lambda_2, \dots, \lambda_n\}, \ \xi = \{\xi_1, \xi_2, \dots, \xi_n\} \in \mathbb{C}^n$$
. Then $\|A\xi\|^2 = \sum_k |\lambda_k \xi_k|^2, \ \langle A\xi, \xi \rangle = \sum_k \lambda_k |\xi_k|^2.$

By (9)

$$\left| \sum_{k} \lambda_{k} |\xi_{k}|^{2} \right|^{2} > (1 - m^{2}(A)) \sum_{k} |\lambda_{k} \xi_{k}|^{2} \sum_{k} |\xi_{k}|^{2}.$$

Denoting $|\xi_k|^2 / \sum_k |\xi_k|^2 = p_k$, we get $p_k > 0, \sum p_k = 1$ and

$$\left| \sum_{k} \lambda_k p_k \right|^2 > \left(1 - m^2 \left(A \right) \right) \sum_{k} |\lambda_k|^2 p_k. \tag{14}$$

For arbitrary set of complex numbers $\{\lambda_k\}$ an algorithm of definition of m(A) is described in [9].

For a particular case the last inequality is reduced to Kantorovich inequality. If $0 < \lambda_1 \ \mathbf{6} \ \lambda_2 \ \mathbf{6} \cdots \mathbf{6} \ \lambda_n$, then $1 - m^2(A) = \frac{4\lambda_1 \lambda_n}{(\lambda_1 + \lambda_n)^2}$ and

$$\left(\sum_{k} \lambda_{k} p_{k}\right)^{2} > \frac{4\lambda_{1}\lambda_{n}}{\left(\lambda_{1} + \lambda_{n}\right)^{2}} \sum_{k} \lambda_{k}^{2} p_{k}.$$

The same inequality remains true, if for example, $\{\lambda_k\}$ is a subset of the closed circle with the center at $\frac{\lambda_1 + \lambda_n}{2}$ and of radius $\frac{\lambda_n - \lambda_1}{2}$.

According to (4)

$$\sum p_k \lambda_k^2 - \left(\sum p_k \lambda_k\right)^2 \mathbf{6} \frac{(\lambda_n - \lambda_1)^2}{4}$$

which may be compared with Shisha-Mond inequality ([10], 5.54)

$$\sqrt{\sum p_k \lambda_k^2} - \sum p_k \lambda_k \mathbf{6} \frac{\lambda_n - \lambda_1}{4(\lambda_n + \lambda_1)}.$$

State Engineering University of Armenia

E-mail: levgev@hotmail.com

L. Z. Gevorgyan

On the Minimal Norm of a Linear Operator Pencil

The following problem is studying: how close one of the two given Hilbert space operators may be approximated by the multiples of another. Some particular cases are studied: the first, when the operator is approximated by its adjoint, and in more detailed manner; the second, when the operator is approximated by scalar operator and the identity operator is approximated by multiples of a fixed one. Some extremal geometrical problems are investigated and the generalization of known inequalities are established.

Л. З. Геворгян

О минимальной норме линейного операторного пучка

Исследуется следующая задача: насколько тесно один из двух данных операторов, действующих в гильбертовом пространстве, может быть аппроксимирован кратными другого. Рассмотрены частные случаи: аппроксимация оператора кратными сопряженного оператора; аппроксимация оператора скалярными операторами; аппроксимация единичного оператора кратными данного оператора, а также некоторые экстремальные геометрические задачи. Обобщены известные неравенства.

Լ. Ձ. Գևորգյան

Օպերափորային գծային փնջի նվազագույն նորմի մասին

Ուսումնասիրվում է հետեւյալ խնդիրը։ Տիլբերթյան տարածությունում գործող երկու օպերատորներից մեկը որքան սերտորեն կարող է մոտարկվել մյուսի պատիկներով։ Քննարկվել են նաեւ մասնավոր դեպքեր, երբ օպերատորը մոտարկվում է իր համալուծով, օպերատորը մոտարկվում է սկալյար օպերատորով եւ միավոր օպերատորը մոտարկվում է տրված օպերատորի պատիկներով։ Դիտարկվել են որոշ էքստրեմալ երկրաչափական խնդիրներ, եւ ընդհանրացվել են հայտնի անհավասարություններ։

References

- 1. Asplund E., Ptak V. Acta Math. 1971. V. 126. P. 53-62.
- 2. Dragomir S. S. Appl. Anal. Disc. Math. 2007. V. 1. P. 92-110.
- 3. Izumino S. Math. Japon. 1982. V. 27. P. 645-646.

- 4. Dragomir S. S. Banach J. Math. Anal. 2007. V. 1. N2. P. 154-175.
- 5. Stolov E. L. Izv. Vyssh. Ucheb. Zaved. Math. 1979. V. 10. P. 98-100.
- 6. Gevorgyan L. Math. Sci. Res. J. 2004. V. 8. N 1. P. 16-26.
- 7. Osserman R. Amer. Math. Monthly. 1992. N 5. P. 332-337.
- 8. Gevorgyan L. Z. Reports of NAS of RA. 2007. V. 107. N 2. P. 111-117.
- 9. Gevorgyan L. Oper. Matrices. 2009. V. 3. N 1. P. 145-153.
- 10. Dragomir S. S. J. Ineq. Pure Appl. Math.2003. V. 4. N 3. Article 63.