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0. Let A and B be linear bounded operators, acting in a Hilbert space
(H, (e, ®)) and ¢t be a complex number. Denote by SpA, W (A) and w(A) respectively
the spectrum, the numerical range and the numerical radius of A. The vector-
function A +tB is known as the pencil, generated by A and B. In some problems
the least value of ||A + ¢tB|| plays very important role. Evidently there is at least
one complex number ¢, such that %gé’ |A+tB| = ||[A —tyB||. In what follows we in-
vestigate this problem for a special operator B, find the best value ¢y, consider the
problem in greater details for three particular cases and prove some inequalities.

1. Proposition 1. Let the operator B be one-to-one. Then

|(Az, Bx)|?

N S

1nf |A—tB| = sup \/HAI’HQ
Proof . Let a,b € H be two non-zero elements. From elementary properties of
the Hilbert space

(0. 0)

: f o 2 2
int lo — 5] = flal]* ~ S
Putting a = Ax, b = Bz, where z is arbitrary non-zero element from H, we get
Az, Bx)|?
: f A o B 2 — A 2 |< )
ind (A~ tB)e? = | Az — St

According to a theorem of Asplund and Ptak [1]

sup inf ||(A —¢B)z|| = inf sup [|[(A —tB)z||,
lle||=1t€C tE€C |z =1
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and it completes the proof.

To find the best value ¢y, we impose an additional restriction on B. Suppose
that B is bounded from below, i.e. ||Bz|| > §||z||, § > 0. Let {z,} be a sequence of
unit vectors, approximating the supremum in (1). Then

(Az,, Bx,) > |(Az,, Bz,))?

—r — lllBrll| = t—=——5—
| Bl | B, |
[(Az,,, Bx,)|”
2
| B

Az, Bx,)|?
6 A~ t,BP — || Ax, |* 1 AT Brn)l
[Bar]

— 2Re (Ax,, toBxy) + |to]” || Bz, =

= [I(A — toB) @u* — || Aza” +

As the operator B is bounded from below, the inequality

(Azy,, Bxy) 1 |(Ax,, Bzy,)
NAp, Bn) | < 2 | N80 B0) oy
' ZAE S e
is satisfied. Thus,
. (Az,, Bx,)
tg = lim ——M~. 2
0= % BaP 2
A2 2
For B = A* we get 1nf |A —toA*|| = sup 4/ ||Az|]? — % If the operator A is
[|z]|=1 z

normal, then for any = € H the equality | A*z|| = |Az| is satisfied. In this case the
condition, imposed on B may be dropped. Indeed, the norm in the left hand side
may be calculated, taking vectors, belonging to the orthogonal complement of the
null-space of A. Hence, A may be assumed to be one-to-one. If %gg |A—tA*]| =0,
then A = tyA*, otherwise the sequence {||Axz,||} is bounded from below. Anyway,
we get the following result (cf. [2], (2.10)).

Proposition 2. For any normal operator A

|(A2z, z)|?
1nf |A —toA*|| = sup | Az||? — [, 2)
]| | Az|[?
In this case
; y (A%, x,)
o = l1In
n—oo || Az, |2
As [(A%x,,x,)| = [(Ax,, A*z,)| < ||Az,]|| - ||[A*z,|| = ||Az,|*, we may deduce the

inequality |tg| < 1. Evidently, for a Hermitian (or skew-Hermitian) operator A
inf ||A — tA*|| = 0 and || = 1.
teC

Example 1. Let
A= M 0 . A, M € C.
0 X
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The vector, maximizing the right hand side in (1) has the coordinates

xz{mm} 3

~—

VIMTH Do VI [
We have —
| Tm (A1 o)
|A1] 4+ [A2|
If Ay =1, Ay =1, we get %gé’ |A—tA*|| =1 and ¢, = 0.
Further two particular cases of the special interest are considered. For the

inf || A — tA*| = 2
teC

first one we put B = I, where [ is the identity operator.
Proposition 3. For any operator A

inf A —tI] = sup /[|Az|? — [(Az, z)]2. (4)

teC llz|=1

The proof will be omitted. For this case

to = lim (Ax,, x,). (5)

n—oo

Evidently t, € W(A), where the upper bar denotes the closure of the set.

Remark 1. The right hand side of (4) is known as the square root of the Bjork-
Thomee constants of A (see [3]), where it has been shown that it coincides with
Mirsky's constant

M(A) = sup{[{Au, V)| : |lul| = [[v[| =1, (u,¥) = 0},
From formula (4) follows Dragomir's inequality ([4], 3.11)
1A — w*(A) < inf [|A — t1]]*. (6)
teC
Let A be the operator from Example 1. The supremum in the right hand side

2 V2
of (4) is attained on the element z = {\/7_, g} Thus,

MP+ (X2 M+ N?
"Ax"2—|<A.I',.I'>|2:| 1| +| 2| _| 1+ 2| ‘

2 4
m law A — Aof?
ccording to the parallelogram law this difference is equal to ¥’ SO
A A — Ao)? A+ A
},né I || = M The best value is to = — : 2
€

Remark 2. For the operator defined by the matrix

AN
A= AL g, A3 €C
the
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in [9] is proved that

|As| + \/|)\1 — Xo|? + | As)?
5 )

inf || A — t1]| =
teC

According to Schur decomposition A = UTU™!, where U is unitary and T is
triangular. As the operator norm is unitary invariant, the last formula settles the
general case in two dimensional space.

The second problem is related with m(A) = %gé |I—tAl|. This expression occurs
when a Hilbert space operator equation Ax = b is solved by Richardson stationary
iterations ([6]). It defines the rate of convergence of iterations to the solution of
the equation. Evidently m(A) <1 and a non trivial situation arises when m(A) < 1.

Formula A™' = ¢ Z( —tA)" shows that in this case A is invertible.

Proposmon 4 For any operator A

|(Az, )]
mf I —tA]| =sup /]l — ———F—. (7)
ax 0 [Az[ - [l][?
The proof may be found in [6]. Denote
[(Az, )|

p(A) = inf —————
Aatt || Az - |||

According to [6] for any operator A
m?(A) +p*(A) = 1. 9)
We get

(T, Axy)
to = lim 2 —"2
n—oo || A, [|?

(10)

where {z,} is a sequence of unit vectors, approximating the infimum in (8). Let

A A1
= Ax,. Then lim <”’—$;‘> — lim L”;W
o AT P wos
Proposition 5. For any operator A

, meaning that ¢, € W(A™1).

inf ||A —tI|| < ||A|l -inf || — tA]. (11)
teC teC
Proof. Let « have unit norm. Then |(Az,z)| > p(A)||Az|| and
[Az|* — [(Az, 2)* < (1 - p*(A4)) ]| Az|.
Calculating the supremum of the both sides, we get (11).

Corollary. If inf ||A —tI|| = ||A]|, then inf || — tA| = 1.
teC teC
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Example 3. Let \; = 2, A, = —1 in Example 1. Then inéHI —tA|| =1 and
te
inf ||A — tI|| = 1.5 < ||A]|, so conditions inf ||/ — tA|| = 1 and inf ||A — ¢tI|| = ||A| are
teC teC teC
not equivalent.
Recalling (6),(11), we arrive at Dragomir's another inequality

[A1* = w?(A) < [|A|* inf 1T — £A]
teC

For the above considered two dimensional normal operator the vector, maxi-
mizing the right hand side of (7) is defined [7#] by formula (3),

VM|

p:—sn)\_—i—sn)\_,
D] + g S8 san e

P sgnxl + sgnxg
’ [Ad] + [

and
= A

RS
As ||Al] = max{|\i|,|\2|}, the equality |A\i| = |\.| implies that the both sides of
inequality (11) have the same value.

M

Now we suppose that iné’ |l —tA|| < 1. Then
te

I—aA 1
inf |4 — 7)) = inf LL=AL o L se i —pay, (12)
teC a0 |af |to] teC

where %, is defined by (10).
When A\, \; > 0, inequality (12) is reduced to an equality.
By the same way

A—al] 1
IA=ofll o 1 s ea—, (13)

inf ||/ — tA|| = inf <
teC a0 |to| teC

e
where %, is defined by (5).

2. It is interesting to note that considered above minimal norms for some
operators have interesting geometrical meanings. Let for any complex ¢ the norm
of the operator A —tI and its spectral radius (A — tI) coincide. Then

e IA4 = el = jof ol =

The expression in the right hand side is the radius of the smallest circle
C(20, R) containing the spectrum SpA of A. Hence the minimal norm of A — ¢/
equals the radius R of this circle and the optimal parameter ¢, is the affix 2, of
the circle's center. It is known [7] that for any compact subset F' C C the smallest
circle exists, is unique and contains on its boundary at least two points, belonging
to F.
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For the second problem we have

1
inf || —tA|| = 1nf sup |tz — 1| = inf — sup |z — 2| = inf —
teC zp€C |Zo| 2ES8pA zp€C |,2,’0|

so we look for a circle, containing SpA and having the least — ratio among all

circles, satisfying this condition. This circle exists [8] if and on|lzy|1f the coordinate
system's origin does not belong to the convex hull of SpA.

Using formulas (8) and (4), we can establish Cauchy-Bunyakovsky-Schwarz
type reverse inequalities.

Example 4. Let A = diag {1, Aa,... , \n}, €=1{&,&, ... ,& )} € C" Then
AEI® = Il (A€ = Zxk €.
k

By (9)
Z|)\k€k| Z|€k :

Denoting |&/|* /Z &> = pr, we get py > 0>Zpk =1 and

|6l”

(1 =m*(4) > Ml p. (14)

For arbitrary set of complex numbers {\;} an algorithm of definition of m(A) is
described in [9].

For a particular case the last inequality is reduced to Kantorovich inequality.
AN\,
[fO<)\ 66X 6---6)\, then 1 —m?(A) = ——""_ and
(A + )

2
<;)\kpk> > )\4);:)\ Z KDk

The same inequality remains true, if for example, {\;} is a subset of the closed
1

A n
circle with the center at and of radius

According to (4)

2
Spk - (Ypn) 6 2k

which may be compared with Shisha-Mond inequality ([10], 5.54)
N~ 2 -\
A2 A
Zpk Zpk k6 )\ DY )
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The following problem is studying: how close one of the two given Hilbert space
operators may be approximated by the multiples of another. Some particular cases are
studied: the first, when the operator is approximated by its adjoint, and in more detailed
manner; the second, when the operator is approximated by scalar operator and the identity
operator is approximated by multiples of a fixed one. Some extremal geometrical problems

are investigated and the generalization of known inequalities are established.

A. 3. 'eBoprsu

O MUHHUMAALHOM! HOpMe AMHENHOTO OIIEPATOPHOT'O IIyYKa

Hccaepyerca caepyrolnasd 3ajpada: HACKOABKO TEeCHO OAMH M3 ABYX AQHHBIX
OIIEePaTOPOB, AEUCTBYIOIINX B T'MABOEPTOBOM IIPOCTPAHCTBE, MOJKET OBITH ANIIPOKCHUMU-
POBaH KpaTHBIMU APYTOTO. PaccMOTpeHBI YacTHBIE CAyYaW: ANIIPOKCHUMAIUSA ollepaTropa
KPaTHBIMU COIIPSPKEHHOTO OINEepaTopa; AallIpOKCHUMAalUd OlepaTopa CKAAIpHBIMHU OIle-
paTtopaMy; anIpOKCHUMAIlMg €AWHWUYHOTO OllepaTopa KPAaTHBIMM AQHHOTO OIIEpaTopa, a
TaK’Ke HEKOTOphle 3KCTpPeMaAbHBIe TeoMeTpuueckue 3apauu. OOoOIleHBl W3BECTHHIE

HepaBeHCTBa.

L. 9. Gunpqyub

Oy tpwypnpujht gdwyhtt thugh uqugnyyt tnpdh dwuht

Nuumdtwuppymyd £ htpbiywy  fubnhpp: Sppbppjut pupudmpymbmd  gnponn  tipyne
oybpuypnpitiphg dtip nppwb utipypnpti uipnn £ dnpupyyt gnwoh yugphlyotpng: -Lotwny-
ybp GO Owtn dwubwynp ntiypbp, tpp oytpunpnpp dnipupyymd £ hp hwdwjmony, owtpunpnpp
Unypupyynid £ uuyup oytipupnpny tie shuynp oytipupnpp dniqpupymd L ppyd wd oytpunpnphp
wuphobpny: Fhyuplby b npnp Epuyiptidwy bphpugwthwljud ponhplitp, e pbphwipugyty
Ll hwypith withwjwuwpnipymbbbn:
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