
ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԳԵՄԻԱ
НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИ
NATIONAL ACADEMY OF SCIENCES OF ARMENIA
ДОКЛАДЫ ԶԵԿՈՒՅՑՆԵՐ REPORTS
Ж 109 2009 N» 4

MATHEMATICS

УДК 519.681

H. A. Grigoryan, A. S. Shoukourian

Equivalence of Processes in Object-Oriented Environments with
Commutative and Non-Commutative Objects

(Submitted by academician S.K. Shoukourian 30/IX 2009)

Keywords: object-oriented environments, model of an environment, processes, equiva
lence of processes, multitape multidimensional automata, partially commutative semigroups,
partially commutative alphabet, regular expressions

1. Introduction. The concept of a process [1, 2] is fundamental to many areas
of science and engineering. The common idea of a process is a pattern of activ
ity performed by distributed entities (often named objects, agents [3]) to achieve
particular objectives. As sub-processes are often set up to perform equivalent op
erations, solutions to problem of deciding the equivalence of processes are of high
practical relevance for all applications that involve design, monitoring, and control
of processes. Many forms of equivalences (specifically, bisimulation, trace equiva
lence, functional equivalence [2-5]) have been considered, but the problem for dis
tributed, temporally extended processes has mainly been investigated for process
models that do not contain peculiarities of object/agent-oriented environments [3].
Meantime these peculiarities are inherent and essential for modern manufactunng
frameworks [6].

This paper addresses a model of manufacturing processes introduced in [3].
An extension of the general model defined over an object-oriented environment
is suggested for consideration of functional equivalence problem for processes.
The considered formalism does not cover completely all the peculiarities of the
model in [3]. it is intended for applications where triggering of events for a given
situation occurs periodically, according to some cycle. The formalism includes a
definition of commutative operations and objects, semantics of process execution
and a definition of the functional equivalence problem for processes.

283

It is shown that, if there are no commutative operations, the problem is re
duced to the equivalence problem of multidimensional multitape automata [7] and,
thus, is solvable [8, 9].

In the case of commutative operations the equivalence problem for environ
ments with two commutative objects, with two or more operations per each, is
insolvable [10].

If there is only one object among commutative objects with two or more oper
ations then it is shown that the equivalence problem is reduced to the equivalence
problem of regular expressions over a partially commutative alphabet [11] and,
thus, is solvable.

2. Model Equations and Se II antics. A formal model of an environment based
on a finite set of communicating objects is introduced below. Objects are commu
nicating with each other via a finite set of messages. As there could be several
messages passed to a given object, each object has a possibility to gather a finite
number of received input messages in a queue before processing. A newly received
message is ignored, if it comes after the message queue is filled completely.

Object consists of a unique identifier, a finite set of states and a finite set
of operations. Operations are carried out in response to messages, last some time
interval, and, for a current state, result in a new state as well as in a vector of
messages to be sent to other objects. A state of the environment is a vector of
states of contained objects. State and operation sets of different objects within the
environment are considered disjoint.

Basic model equations describing environment, object, operation as well as
duration of operations and finite message queues are defined as follows:

Environment - (ob... , on), where Oi G {Object}, i = 1,... , n
Object = (ID, {State}, {Operation})
MSG = (msgc, msgi,... , msg^}
Operation = {State} x MSG —♦ {State} x {Reaction}
Reaction G MSGn, Reaction [i] is the component i of the vector Reaction,

i = 1,... ,n
Duration = {Operation} —♦ {1,2,...}

Then the next group of model equations is added to describe message commu
nication within the environment, including message addition to queues for objects
of the environment. Each object queue has its own length p».

EnvState = (sb...,sn), s, G {State} for the object oit i =
EnvStatejz] = s,

MSGQueue^ = (J (MSG-msge)m, p e {0.1,2,...}, A/SG<?ueue(”>[i] is the
m=Q

component i of the vector M SGQueue^
Envlnput G MSGQueue^ x ... x MSGQueue^

284

Finally, a notion of scene is introduced, which describes the status of the
environment at a given time instance t as well as the change of Envlnput basing
on a given Reaction.
Scene — (t, EnvState, Envlnput),t G {1,2,...}
Envlnput J Reaction = (Envfnput[l] ® Reaction^],.... Env!nput[n] £ Reactian[n])
MSGQueue^ = (msg(]\... where msg{}\... ,msg{rn)E (MSG-msgc), m < p
M SGQueue^ 9 msg = (msg(]\... , msg(m\ msg), if m < p, msg G (MSG - msge)
MSGQueue^ msg = M SGQueue^, if m — p
MSGQueue^ msge = MSGQueue^

Any operation op of a given object o can be naturally extended to operation
op(cx/) ; {EnvState} x {Envlnput} —♦ {EnvState} x {Envlnput} in the following way.

VEnv St at eV Envlnput op^ejV>(EnvState, Envlnput) = (EnvState', Envlnput'),
where

EnvState'[j] = EnvState[j], j / i
EnvState'[i] = (op(EnvState[i], (Envlnput[i])[!]))[1]
Envlnput' = EnvInput(?(op(EnvState[i],(EnvInput[i])[].]))[2],

where (Envlnput[i])[].\ is the first message in the queue Envlnput[i], (op(EnvState[i],
(Env/npuf[i])[l]))[v], v = 1,2 are, correspondingly, first and second components of
the resulting vector for the source operation op.

Only extended operations will be considered further. To simplify the no
tation, op will be used instead of op(cif) meaning the mapping: EnvStateSet x
EnvInputSet —► EnvStateSet x EnvfnputSet.

A binary meta-operation named concatenation and denoted by * is defined
over extended object operations of a given environment.

Let op՝ be an extended operation of an object ot and opj be an extended
operation of an object or Then op՝ * op} is an operation meaning the mapping
{EnvState} x {Envlnput} —> {EnvState} —> {Ejivlnput} in the following way:

op, * opj(EnvState, Envlnput) = opj(op՝(EnvState, Envlnput)).

Let Op = {opi,... ,opk} be a set of all extended operations for all objects of
a given environment including also an empty operation which provides a trivial
same-to-same mapping {EnvState} x {Envlnput} into {EnvState} x {Envlnput}.

Then, using the introduced meta-operation of concatenation a semi-group of
all words in the alphabet Op can be considered. It will be denoted further by Fop-

Two objects o՝ and o; are named commutative if and only if for any extended
operation op,i of the object o՝ and for any extended operation op}\ of the object o?
VEnvState VEnvInput

op՝ * opj(EnvState, Envlnput) ֊ op, * op՝(EnvState, Envlnput).

285

A notion of process is introduced to provide a possibility of a programmable
control over an environment. It is started by introducing the following primitives:

TimeConstraint = {tQ 4֊ n * G {0,1,2,... }}, where tQ and At are non-
negative integers

BasicPred = {tti. ... , 7rr}, where TTj is a predicate symbol of arity rij
Condition = 7^(0^.State, • • • j -State), where j G BasicPred
Assertion = (Condition, TimeConstraint)
Situation = (Object, Assertion)
Situation Bat ch — {Situation}

Lei 0 = {oi,... , on} be an environment.
A process over an environment 0 is a tuple P = (0, S, B, T, bs), where:

52 - is an ordered finite set of situations, such that Ver g S, a.Object G 0
B ֊ is a set of situation-batches, such that Mb G Bb C S, be = 0 G B is the end
situation batch
r - is a relation {(<?, 6,u>)|cr G E}, where b G Bf wG a.Object.Operatons
bs - is the start situation batch.

An interpretation is built for a given process, if the initial state of the envi
ronment and following functions are defined:

• initial EnvState : e$o — (sIq), ... , st^)

• a function fop : {EnvState} x {Envfnput} —► {EnvState} x {Env Input} for each
operation symbol op G Op

• a function pT : otl.StateSet x ... x oln^.StateSet —> {TRUE, FALSE} (n} is the
arity of the corresponding predicate symbol) for each predicate symbol.

The semantics of a process interpretation is described below via the following
execution algorithm.

To ensure consistent execution of the process, concurrent execution of two
and more operations of the same object is not allowed. So, in case if there are
two pending situations, ready to be executed at the same time, it must be chosen
which one to execute first. The other situation should stay in a pending state. To
implement this, the set of situations (E) is defined above as ordered, as well as
corresponding checks are performed in the execution algorithm.

Data structures and functions used in the execution algorithm are listed below.

• InputScene - the initial scene (input of the algorithm)

• Pending - a set of situations that are waiting to be executed

• Running - a set of situations E\ for which V<r G E', operation(o) is currently
running

286

• CurrentEnvInput - the current environment input

• nextNode(<T) = b, if € T

• operation(a) = w, if (tr. b, u) € T

• receivedMsg(cr) = TRUE, if a message needed for operation(a) is in Cur
rentEnvInput (in the message queue of the corresponding object).

• canExecute(cr) =receivedMsg((j)&a.Assertion.Condition, where o is a situa
tion.

• begin Execut ion(a) - removes the message needed for operation(a) from Cur
rentEnvInput (from the message queue of the corresponding object).

• finalizeExecution(a) ֊ changes the state of the corresponding object and adds
the Object Reaction of operationfa) to CurrentEnvInput (CurrentEnvInput =
CurrentEnvInput Object React ion).

• executed(cT) = TRUE, if duration(operation(a)) time has passed from the cor
responding beginExecution(cr).

• addfdest, sitBatch) - adds ah situations of the situation batch sitBatch to the
set dest (no duplications).

• remove (source, sit) - removes situation sit from the set source.

• niovefsit, source, dest) - removes situation sit from the set source and adds
to the set dest (no duplications).

• foreach(<7. cond(a)) - iterates sequentially over any situation a for which a
given condition over o — cond(a) is true, according to the order defined in S.

Execution Algorithm
Pending = Running = 0;
CurrentEnvInput = InputScene.Envlnput;
add (Pending, bs);
for(t - InputScene.t; ; ++t)
begin

foreach(cr, a eRunning & executed(cr))
begin

finalizeExecution (a);
remove (Running, (?);
add (Pending, nextNode (cr));

foreach(tr, a € Pending & canExecute (cr)
& t E a.Assertion.TimeConstraint
& (V<7! e Running (7i .object^ a. object))

begin
move(a, Pending, Running);
beginExecution(a);

end

if(Running = 0 &
exit;

end

(Va €Pending-<canExecute((7)))

The execution is successful if Pending = 0 at the end, otherwise the execution
is failed For a successful execution, the result of the algorithm is the last scene
before the end of the algorithm (output scene). The tuple (Pending, Running,
CurrentTime, CurrenlEnv Input) will be called an execution slate of the algorithm.

Two processes defined over the same environment will be called functionally
equivalent if and only if for every input scene the execution of both processes either
fails or the environment inputs and environment states in output scenes are equal
for all interpretations.

We will denote the equivalence of and P2 as Px P2.
The functional equivalence problem for the case when there are no commu

tative objects in a given environment was considered in [9] for a more simplified
model. It was shown, that the problem could be reduced to the equivalence prob
lem of multidimensional multitape automata, which is solvable [8]. It will be shown
below, that the result also holds when the introduced extension is considered.

The equivalence problem in environments with commutative objects will be
also considered below.

An equivalent representation of a process, named sequential execution scheme
of the process - SESP, is defined next. This representation is more convenient for
further considerations.

Let P = (O, E, B, T, 6,) be a process and E = {ai,... ,Let also =
{fo, Tn* Atjn € {0,1,2,...}} is a time constraint for a given situation cr։ of E. Let
Af be the least common multiple for all tQ be the maximum of all t0,՛

The set of states of the SESP(P) corresponds to the set of execution states of
the execution algorithm (taking into account the periodicity of time constraints).
It is defined as 2E x R x T x {Env Input}, where 2E is the set of pending situations,
R = {[(<7i, Ti),..., (ob, rb)]|a։. object cjj.object, 0 < r։ < duration(pperation(ai))}

288

is the set of running situations (7; is the time remaining for the completion of
operation(a։)), T = {0,... , Zq 4- At — 1} is the set of possible values of current
time, {Envlnput} is the set of current environment inputs. Let NextT(t) = t 4֊ 1 if
t < tQ 4֊ St - 1, NextT(t) = t0 if t = t0 4- St - 1. A transition is defined from state
5(i) = (p(O։/?(!), td), j£d)) to state s™ = (P™, R<2\t<2\ IE™), where pV,pW e

G R,t™,t™ e T,IEV,IE™ G {Envlnput}, if t™ = NextT(tV) and $<2>
can be reached from s(1) by one step of the execution algorithm for t = t™ for some
interpretation.

The execution algorithm is modified to work with SESP in the following way.
As the sets Pending, Running and Gurr ent Envlnput are already encoded in the
states of SESP, we just need to start from the state corresponding to the input scene
and go to a next state corresponding to the Pending, Running and CurrentEnvlnput
sets of the original algorithm, executing the operations and changing the states of
objects as in the original algorithm.

Let StateT(t) = t if t < t0, StateT{t) = to + (f - tQ)modSt otherwise. Let
InputState(Si) = (bs, 0, StateT(Si.t), Sj.Envlnput) be the state corresponding to the
input scene $/, Output State(So) = (0,0, StateT(So-t), So-Envlnput) be the state cor
responding to the output scene So՛

The following lemma states the correspondence between a given process and
its SESP.

Lemma 1 [9]. For every interpretation I and every input scene Sj:
a) if the execution of the process completes successfully with an output scene

So, there is a path in the SESP from IS = InputState(Si) to OS = Outputs tat e(So),
and the execution of the SESP with the input scene Sj reaches OS and vice versa;

b) if the execution of the process fails, the execution of the SESP never completes
and vice versa.

3. Equivalence of Processes In Environments With Non-Commutative Ob
jects. A multidimensional multitape automaton modeling a given process P is built
below.

The corresponding automaton A(P) has:

• one tape with an alphabet {0,1} for each condition, the dimension of which is
the same as the number of objects that the condition uses (condition tapes);

• one 1-dimensional tape for each object for encoding the operation history; it
will store operation and message pairs (operation tapes);

• one 1-dimensional tape for reading the start time, input and output messages
from (I/O tape);

289

• one 1-dimensional tape for each operation op, for encoding the function fop;
it will store elements from the set {Reaction} (message tapes).

The set of states of the automaton A(P) consists of three subsets. These are
a set of initialization states, which are used for reading the input scene time and
messages, a set of states that are used to read the the output scene messages and
a set of main states, used for modeling the execution of the process.

We will assume that the graph of main states of the automaton A(P) is divided
into subgraphs - blocks that correspond to the states of the SESP. The block cor
responding to the state s is denoted B(s). Each block has one start state, and the
only transitions possible between blocks are to a start state. If there is a transition
from state s to state s' in the SESP, then there is a transition from block B(s) to
block B(s'). Below the actions performed in each block are described.

The value of the condition is read from the corresponding condition tape (the
heads on condition tapes are not advanced at this point). The output messages
(reactions) are read from the corresponding message tapes. Upon completion of an
operation, each head on the condition tapes which use the active object (the object,
an operation of which just completed) is advanced in the direction corresponding to
that object, and the corresponding operation-message pair is read from an operation
tape.

The automaton starts by reading the input scene and getting to the corre
sponding block. After successful execution (the automaton gets to a block cor
responding to the end situation batch be), the automaton reads the output scene
messages from the I/O tape and compares them to the current messages. If they
match, then the tapes are accepted, otherwise, they are rejected.

Lemma 2. The positions of heads of the automaton A on the condition and
message tapes are uniquely determined by the positions of heads on operation tapes.

Let y = ((j/n, 1/12,...j/n2,...)) be the sequences of operation-
message pairs of all objects. We will say, that a filling of the tapes models an
interpretation, bounded by y, if these operation-message pairs are written on the
operation tapes, the message functions are written on the message tapes and the
values of the cells of condition tapes, corresponding to any subsequences of y,
equal the values of conditions for that interpretation after performing the oper
ations on the given messages. Let I be an interpretation, Si be an input scene,
y - ((2/11,3/12» •••)»•• • »(2/niiJ/n2i • ••)) be the sequences of operation-message pairs,
that the process would perform for I and Sj.

Lemma 3. For the automaton A(P) working on a filling of tapes modeling I
and bounded by y, if in the ith step of the execution of the SESP s is the active state,
then in the sequence of active blocks of A the ith would be B(s) and vice versa.

Lemma 4. If a filling of the tapes is such, that there is no interpretation for

290

which the filling is modeling, bounded by some sequences of operation-message
pairs, then for any process P corresponding to the signature of tapes, the corre
sponding automaton A will never stop on the filling.

Let Pi and P2 be two processes, A(Pi) and A(P2) be the corresponding multi
dimensional multitape automata, constructed in the above-mentioned way.

Theorem 1. PY ~ P2 o A(Pi) ~ A(P2).
Proof. ,4(Pi) ~ A(P2) => Pi ~ P2. It follows from Lemma 3.
Pi P2 => A(P1) ~ A(P2). Let Pi ~ P2, and p is a filling of the tapes on which
stops. We'll show that A(P2) also stops on that filling and the positions of

the heads are the same.
According to Lemma 4, there is an interpretation /M, for which p is modeling,

bounded by the sequences of operation-message pairs of p. From P{ ~ P2 will
follow that P2 gives the same results as P} for all input scenes for 4, hence .4(P2)
stops for all I/O tape fillings (and p) as A(Pi). The same positions of heads of the
two automata follow from Lemma 2.

4. SESP Modeling Via Regular Expressions Over A Partially Commutative
Alphabet. Let Y be a finite alphabet, Yi,...Ym be the partition of the alphabet
Y on disjoint non-commutative subsets by a relation p. Y is named a partially
commutative alphabet [11]. Let Ri and R2 be regular expressions in the alphabet
Y. If for every word w € Ri there exists a word w' 6 R2, that coincides to w within
commutation of symbols from different subsets of the alphabet Y and, vice versa,
if for every word w' 6 R2 there exists a word w e Ri, that coincides to w within
commutation of symbols from different subsets of the alphabet X then regular
expressions Ri and R2 are named p-equivalent and denoted by Ri R-i(p) [11]

The set of all operations of all objects of an environment 6 will be de-
r? m j

noted by 0op = U U Oj.opj. Let Y be a partially commutative alphabet [11],
։=1 j-i

Y = U U{op.1,.--"Poro‘lo"(o“”,,)} where op^... oP^՝‘rat՝on{o“”,l)) is a representation
1=1 j=l

of a given operation j of object i as a sequence of sub-operations that are executed
I -x (i) (1) (2)within one time unit of the operation duration. Evidently, it o, .opj * ot .op, =

oj2).op’2) ♦ op’.opj1’ then opjopJI’, = PpJJj,op.^J,•
It is easy to transform a given SESP into a regular expression over the alphabet

Y: it is requested just to add for each node transitions for missed operations leading
to the endless loop. For a given SESP P the corresponding regular expression will
be denoted R(P). The figure below demonstrates the transformation from a source
process to an automaton that recognizes the corresponding regular expression.

Lemma 5. For any SESP Pi and P2 in the environment 6 with commutative
objects Pi /?1(Pl)~«2(P2)(p).

Proof. P| ~ P2 => Ri(Pi) ~ P2(P2)(p). Suppose the contrary; processes Px and

291

P2 are equivalent, but the corresponding regular expressions R\(P\) and /?2(P2) are
not. The latter, according to the definition, means that there either exists a word wi
from that does not coincide, up to commutation of symbols from different
subsets of the alphabet, with any other word W2 from or vice versa. Let's
assume that the first case takes place.

Sequences of suboperahons forop։ andop2

op^op^..op{dura,,on^)

op2 =oP^...op^n"°n{op^

Fragment of the automaton

Fragment of a source process P corresponding to regular expression R(P}

This, in its turn, according to the transformation of the source process to an
automaton, means that there exists at least one sequence of operations of process
P՝t, that corresponds to the word ?ui from R\(P\), which does not have correspond
ing, in terms of affecting the environment, sequence of operations in process P2.
This contradicts to the assumption that processes P\ and P2 are equivalent.

As R\(P\) ~ /?2(P2)(p) => P} ~ P2 is evidently true, due to the transformation
algorithm depicted above, the lemma is proved.

5. Equivalence of Processes In Environments With Commutative Objects.
Theorem 2. If there exist two commutative objects in an environment 0 with

more than one operation then the equivalence problem of processes in the environ
ment is unsolvable.

This can be proved using the technique similar to [10], i.e. via reducing
the considered problem to the equivalence problem of non-deterministic multitape
automata.

Theorem 3. The problem of functional equivalence of processes in an environ
ment with commutative objects, when there is only one object with more than one
operation, is solvable.

Per Lemma 5, to prove this theorem, it is sufficient to show that the prob
lem of equivalence of regular expressions over a partially commutative alphabet is

292

solvable. This is proved in [11]. For the maturity of consideration, the main idea
of the proof along with necessary definitions is adduced below.

Let r be a positive integer, W = {0,1,...}. The set Nr is called an r-
dimensional tape. Any element of Nr - (a1։... ,ar) is called a cell of the tape and
the numbers at,... , ar are called the coordinates of the corresponding cell. The
cell (0,... ,0) is the initial cell. Let X be a finite alphabet. Any mapping Nr —* X
is called a fill of the tape with the symbols of X.

Let A =< Y, S, 6, F, sq > be a deterministic automaton, that recognizes exactly
the regular expression R in the input alphabet Y, with the set of states S, the

n
transition function 6, the set of final states F and the initial state s0. Let Y = |J Yt,

where |Yi| > 2, |y,| = 1, i = 2,... ,n. |Yi| is denoted by q. Consider (n -+■ q - 1)-
dimensional tape TV71^՜1. q dimensions of the tape are used for expressing the
movement on symbols from Vi, and the rest n—1 dimensions are used for expressing
the movement on symbols from Yit i = 2,... ,n.

Binary representation of cell coordinates, adduced in [7] is used The binary
representation of the initial cell is (0,... ,0). The binary representation of any other
cell is built basing on the binary representation of the predecessor of the given cell
as each cell has only one predecessor. The length of the code of a coordinate of a
cell is either equal or greater by one than the length of code of the corresponding
coordinate of the predecessor.

The cell = (an,... , ain4.q_i) is called the predecessor of the cell a2 -
(021,... ,o2n+g_1), and the corresponding predicate, denoted by 7r(ai.a2), has the
value true, if and only if, 3j G {1,... , n 4- q - 1}, k = 1,... , ji — 1. j+ 1,... , n 4֊ q - 1,
that

J) <*2k = <*lk-
2) = Qjj 4՜ (L 4- 1), if J ~ k, L — Qu 4՜ ... 4՜ Oin+q—1՛
If 7r(aba2) is true, and the cells ai and a2 differ by the coordinate j, then this

is represented by the new predicate 7r;- as 7tj(ai,a2) is true.
The partially mapping y : Nn -> 2s is called the set of all execution traces of

the automaton A, if and only if:
1) ^(0,... ,0) = {so}. P(0........0) = 0
2) Va € Nn \ {0,... ,0}, P(a) = is true, j = ,nk. k <

n + q- 1}. </?(a) =
The finite subset of execution traces, where the sum of coordinates of each

cell is less or equal to, k — 1, will be called an (execution) trace word of length k.
The set of all trace words is denoted by The set of all cells, used in the given
trace word u is denoted by tlw.

The part of a trace word cu, where sum of coordinates of each cell is equal to
k, is called the kth diagonal of the trace word u and denoted by 4(a;). The length

293

of is equal to k 4- 1. The length l(w) of a trace word cu is equal to the number
of the diagonals it contains.

For a given trace word u a path p = apx ... aPm, m > 1, aP} 6 l/u, j € , m}
is defined as sequence of cells where ipaPv, v = 1,... , m ֊ 1.

For a given path p = apx ... aPm the word xp = yPx... the alphabet
Y is called the characteristics of the path p if and only if, Vj E {I,... , m}, i E
[1,... ,n + g - 1}: ‘ ֊J.®

1) yP) € Y։ , i 1 => QPj+i[i] = aPj+i[ij 4֊ 1,
2) yPj £ i ~^p7+i p] — otPj [i] 4՜ (Z/ 4՜ I)»
/. = aPj|l] + ... + aP)[n+ <7 - 1].
The path p = apx ...aPm is called complete, if aPJ = (0,... ,0). A complete

path p = aPl ... aPm is called accepted by the automaton A, if ^(^pm) contains final
state of automaton 4. The coordinates of cell are called canonical form of the /'rn
complete path p = oPx ... aPm.

For each automaton .4, the set of all accepted paths in a trace word is
denoted by APa(lj), and the set of their canonical forms - CFApA(„).

Suppose that automata 4i and A2 recognize exactly regular expressions Rx
and R2, correspondingly, and Sb S2 - are their sets of states. Also suppose that
k = 25 - 1, where S = |S։| 4- IS2I, u'j and uj2 are trace words of automata 4i and 42
of length A՝.

Lemma 6. C1'apAi(ui) = CFap^^) <=> Ri ~ #2(p).
Assume R} is not ^֊equivalent to R2, and there are no canonical forms of paths

of the length less or equal to k in trace words and w2 that are recognized by
the automaton 4b but are not recognized by the automaton A2, or, vice versa, are
recognized by the automaton 42, but are not recognized by the automaton 4b

Due to assumption there is a canonical form of corresponding complete paths
P՝J] = aPi • • • aPm with a length greater than k, m > k, which is recognized by one of
the automata, say4b but is not recognized by the automaton 42. This means that
^i(aP,n) contains final state of automaton 4], whereas ^A2^Prn) does not contain
a final state of the automaton 42. As m > k, there exist two cells and aP
in the path p, such that the sum of coordinates of the cell) is greater than
the sum of coordinates of the cell = <pAj(aP')), j = 1,2, and p(;) =
aP1 ... aP՝*... a(j'l... a r 1 Pm

Let xtf be the characteristics of the sub-path .. aPni of the path p,
and p[J } ...a" is a path starting from the cell a, to some cell a", which has
the same characteristics yp \ It is evident that such a path exists. The sub-path
of the path p, which starts from apx and ends with the predecessor of the cell
is denoted by L The concatenation of two paths p^՛ > n p{j՛ 1 is denoted by
piiw = p(j }p^' }. It's length is less than the length of the initial path p^X Evidently,

294

Vai (a") = PAitaprJ contains the final state of the automaton Xb and (^2(a") =
'pAitupm) does not contain the final state of the automaton A2. If the length of
the path priew is still greater than k, similar considerations shall be performed until
the obtained path has a length not exceeding k. But this contradicts to the initial
suggestion that if a path is accepted in trace words by the automaton A} Then
there exists another path with the same canonical form which is accepted by the
automaton Ay € {1,2}, j ± j՛.

As the assumption Rx ~ R2(p) => CFAPAiM = CFAPa^ is obviously true,
lemma is proved.

Yerevan State University
Institute for Informatics and Automation Problems NAS RA

H. A Grigoryan, A S. Shoukourian

Equivalence of Processes in Object-Oriented Environ II ents with Commutative and
Non-Co II mutative Objects

The equivalence of processes is an important constituent of process optimization.
Functional equivalence problem for processes in object-oriented environments is consid
ered. Two cases are investigated: when the turn of executing operations for objects is
essential and when for some objects it is not essential. In the latter case the objects are
named commutative. It is shown that the equivalence problem for environments that con
tain two or more commutative objects with more than one operation is insolvable. It is also
shown that if there is only one object with two or more operations among commutative
objects then the equivalence problem is solvable.

Հ. Ա. Գրիգորյան, Ա. Ս. Շուքուրյան

Պրոցեսների համարժեքությունը կոմուտատիվ եւ ոչ կոմուտատիվ օբյեկտներով
օբյեկտակողմնոըոշված միջավայրերում

Պրոցեսների համարժեքությունը դրանց օպտիմիգացիայի կարեւոր բաղկացուցիչ է: Այս
հոդվածում դիտարկված է պրոցեսների ֆունկցիոնալ համարժեքության խնդիրը օբյեկտա-
կողմնորոշված միջավայրերում: Ուսումնասիրված են երկու դեպք երբ օբյեկտների համար
գործողությունների կատարման հաջորդականությունը կարեւոր է, եւ երբ, ինչ-որ օբյեկտնէտի
համար, այն կարեւոր չէ: Վերջին դեպքում օբյեկտները կոչվում են կոմուտատիվ. Ցույց է
տրված, որ պրոցեսների համարժեքության խնդիրը լուծելի չէ այն դեպքում, երբ միջավայրում
գոյություն ունեն երկու կամ ավելի կոմուտատիվ օբյեկտներ, որոնք ունեն մեկից ավելի
գործողություն: Ցույց է տրված նաեւ, որ եթե կոմուտատիվ օբյեկտների մեջ գոյություն ունի

295

միայն մեկ օբյեկցւ երկու կամ ավե[գործողություններով, ապա համարժեքության խնդիրը

|ուծեփ է:

Г. А. Григорян, А. С. Шукурян

Эквивалентность процессов в объектно-ориентированных средах с
коммутативными и некоммутативными объектами

Распознавание эквивалентности процессов является важной составляющей их
оптимизации. В статье рассмотрена проблема функциональной эквивалентности
процессов в объектно-ориентированной среде. Исследованы два следующих случая:
когда очередность выполнения операций для объектов важна, и когда для некоторых
объектов она не имеет значения. В последнем случае объекты называются
комхмутативными. Показано, что проблема эквивалентности в средах, содержащих
два или более коммутативных объекта с более чем одной операцией, неразрешима.
Также показано, что если среди коммутативных объектов существует лишь один
объект с двумя или более операциями, то проблема эквивалентности разрешима.

References

1. Bergstra J.A. In: A. Ponse and S. Smolka (eds.). Handbook of Process Algebra.
Elsevier Science. 2001.

2. Baeten J.C.M. - Theoretical Computer Science. 2005. V. 335. Issue 2-3. P. 131-
146

3. Raulefs P. - IFIP World Computer Congress '94. 1994. V. 2. P. 18-30.
4. Bard Bloom - Formal Asp. Comput. 1994. V. 6(3). P. 317-338.
5. Magnani L., Nersessian N.J., Thagard P. Model-Based Reasoning in Scientific

Discovery. Springer. 1999.
6. Vargas-Villamil F. D., Rivera D.E., Kempf K.G. - IEEE Transactions on Control

Systems Technology. 2003. V. 11. N 4. P. 578-87.
7. Годлевский А. Б., Аетичевский А. А., Шукурян С. К. - Кибернетика. 1980.

N 6. C. 1-7. (A. B. Codlevskii, A. A. Letichevskii, S. K. Shukuryan Cybernetics and Systems
Analysis. 1980. N. 6. P. 1-7.)

8. Grigorian H., Shoukourian S. - Journal of Computer and System Sciences. 2008.
V. 74. Issue 7. P. 1131-1138.

9. Grigoryan H. A. - Reports of the National Academy of Sciences of Armenia.
2008. V. 108. N 1. P. 50-59.

10. Тузов В. A. - Кибернетика. 1971. N5. С. 28-32. (V.A.Tuzov • Cybernetics and
Systems Analysis. 1971. V. 7. N. 5. P. 778-789.)

И. Шукурян A. С. - Кибернетика и системный анализ. 2009. N3. С. 3-11. (A.S.
Shoukourian - Cybernetics and Systems Analysis. 2009. V. 45. N. 3. P. 387-396.)

296

