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1. Introduction. The concept of a process [1, 2] is fundamental to many areas 
of science and engineering. The common idea of a process is a pattern of activ
ity performed by distributed entities (often named objects, agents [3]) to achieve 
particular objectives. As sub-processes are often set up to perform equivalent op
erations, solutions to problem of deciding the equivalence of processes are of high 
practical relevance for all applications that involve design, monitoring, and control 
of processes. Many forms of equivalences (specifically, bisimulation, trace equiva
lence, functional equivalence [2-5]) have been considered, but the problem for dis
tributed, temporally extended processes has mainly been investigated for process 
models that do not contain peculiarities of object/agent-oriented environments [3]. 
Meantime these peculiarities are inherent and essential for modern manufactunng 
frameworks [6].

This paper addresses a model of manufacturing processes introduced in [3]. 
An extension of the general model defined over an object-oriented environment 
is suggested for consideration of functional equivalence problem for processes. 
The considered formalism does not cover completely all the peculiarities of the 
model in [3]. it is intended for applications where triggering of events for a given 
situation occurs periodically, according to some cycle. The formalism includes a 
definition of commutative operations and objects, semantics of process execution 
and a definition of the functional equivalence problem for processes.
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It is shown that, if there are no commutative operations, the problem is re
duced to the equivalence problem of multidimensional multitape automata [7] and, 
thus, is solvable [8, 9].

In the case of commutative operations the equivalence problem for environ
ments with two commutative objects, with two or more operations per each, is 
insolvable [10].

If there is only one object among commutative objects with two or more oper
ations then it is shown that the equivalence problem is reduced to the equivalence 
problem of regular expressions over a partially commutative alphabet [11] and, 
thus, is solvable.

2. Model Equations and Se II antics. A formal model of an environment based
on a finite set of communicating objects is introduced below. Objects are commu
nicating with each other via a finite set of messages. As there could be several 
messages passed to a given object, each object has a possibility to gather a finite 
number of received input messages in a queue before processing. A newly received 
message is ignored, if it comes after the message queue is filled completely.

Object consists of a unique identifier, a finite set of states and a finite set 
of operations. Operations are carried out in response to messages, last some time 
interval, and, for a current state, result in a new state as well as in a vector of 
messages to be sent to other objects. A state of the environment is a vector of 
states of contained objects. State and operation sets of different objects within the 
environment are considered disjoint.

Basic model equations describing environment, object, operation as well as 
duration of operations and finite message queues are defined as follows: 

Environment - (ob... , on), where Oi G {Object}, i = 1,... , n 
Object = (ID, {State}, {Operation}) 
MSG = (msgc, msgi,... , msg^}
Operation = {State} x MSG —♦ {State} x {Reaction}
Reaction G MSGn, Reaction [i] is the component i of the vector Reaction, 

i = 1,... ,n
Duration = {Operation} —♦ {1,2,...}

Then the next group of model equations is added to describe message commu
nication within the environment, including message addition to queues for objects 
of the environment. Each object queue has its own length p».

EnvState = (sb...,sn), s, G {State} for the object oit i = 
EnvStatejz] = s,

MSGQueue^ = (J (MSG-msge)m, p e {0.1,2,...}, A/SG<?ueue(”>[i] is the 
m=Q

component i of the vector M SGQueue^
Envlnput G MSGQueue^ x ... x MSGQueue^
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Finally, a notion of scene is introduced, which describes the status of the 
environment at a given time instance t as well as the change of Envlnput basing 
on a given Reaction.
Scene — (t, EnvState, Envlnput),t G {1,2,...}
Envlnput J Reaction = (Envfnput[l] ® Reaction^],.... Env!nput[n] £ Reactian[n])
MSGQueue^ = (msg(]\... where msg{}\... ,msg{rn)E (MSG-msgc), m < p
M SGQueue^ 9 msg = (msg(]\... , msg(m\ msg), if m < p, msg G (MSG - msge) 
MSGQueue^ msg = M SGQueue^, if m — p
MSGQueue^ msge = MSGQueue^

Any operation op of a given object o can be naturally extended to operation 
op(cx/) ; {EnvState} x {Envlnput} —♦ {EnvState} x {Envlnput} in the following way.

VEnv St at eV Envlnput op^ejV>(EnvState, Envlnput) = (EnvState', Envlnput'), 
where

EnvState'[j] = EnvState[j], j / i
EnvState'[i] = (op(EnvState[i], (Envlnput[i])[!]))[ 1]
Envlnput' = EnvInput(?(op(EnvState[i],(EnvInput[i])[].]))[2],

where (Envlnput[i])[].\ is the first message in the queue Envlnput[i], (op(EnvState[i], 
(Env/npuf[i])[l]))[v], v = 1,2 are, correspondingly, first and second components of 
the resulting vector for the source operation op.

Only extended operations will be considered further. To simplify the no
tation, op will be used instead of op(cif) meaning the mapping: EnvStateSet x 
EnvInputSet —► EnvStateSet x EnvfnputSet.

A binary meta-operation named concatenation and denoted by * is defined 
over extended object operations of a given environment.

Let op՝ be an extended operation of an object ot and opj be an extended 
operation of an object or Then op՝ * op} is an operation meaning the mapping 
{EnvState} x {Envlnput} —> {EnvState} —> {Ejivlnput} in the following way:

op, * opj(EnvState, Envlnput) = opj(op՝(EnvState, Envlnput)).

Let Op = {opi,... ,opk} be a set of all extended operations for all objects of 
a given environment including also an empty operation which provides a trivial 
same-to-same mapping {EnvState} x {Envlnput} into {EnvState} x {Envlnput}.

Then, using the introduced meta-operation of concatenation a semi-group of 
all words in the alphabet Op can be considered. It will be denoted further by Fop-

Two objects o՝ and o; are named commutative if and only if for any extended 
operation op,i of the object o՝ and for any extended operation op}\ of the object o? 
VEnvState VEnvInput

op՝ * opj(EnvState, Envlnput) ֊ op, * op՝(EnvState, Envlnput).
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A notion of process is introduced to provide a possibility of a programmable 
control over an environment. It is started by introducing the following primitives:

TimeConstraint = {tQ 4֊ n * G {0,1,2,... }}, where tQ and At are non- 
negative integers

BasicPred = {tti. ... , 7rr}, where TTj is a predicate symbol of arity rij
Condition = 7^(0^.State, • • • j -State), where j G BasicPred
Assertion = (Condition, TimeConstraint)
Situation = (Object, Assertion)
Situation Bat ch — {Situation}

Lei 0 = {oi,... , on} be an environment.
A process over an environment 0 is a tuple P = (0, S, B, T, bs), where:

52 - is an ordered finite set of situations, such that Ver g S, a.Object G 0
B ֊ is a set of situation-batches, such that Mb G Bb C S, be = 0 G B is the end 
situation batch
r - is a relation {(<?, 6,u>)|cr G E}, where b G Bf wG a.Object.Operatons 
bs - is the start situation batch.

An interpretation is built for a given process, if the initial state of the envi
ronment and following functions are defined:

• initial EnvState : e$o — (sIq), ... , st^)

• a function fop : {EnvState} x {Envfnput} —► {EnvState} x {Env Input} for each 
operation symbol op G Op

• a function pT : otl.StateSet x ... x oln^.StateSet —> {TRUE, FALSE} (n} is the 
arity of the corresponding predicate symbol) for each predicate symbol.

The semantics of a process interpretation is described below via the following 
execution algorithm.

To ensure consistent execution of the process, concurrent execution of two 
and more operations of the same object is not allowed. So, in case if there are 
two pending situations, ready to be executed at the same time, it must be chosen 
which one to execute first. The other situation should stay in a pending state. To 
implement this, the set of situations (E) is defined above as ordered, as well as 
corresponding checks are performed in the execution algorithm.

Data structures and functions used in the execution algorithm are listed below.

• InputScene - the initial scene (input of the algorithm)

• Pending - a set of situations that are waiting to be executed

• Running - a set of situations E\ for which V<r G E', operation(o) is currently 
running
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• CurrentEnvInput - the current environment input

• nextNode(<T) = b, if € T

• operation(a) = w, if (tr. b, u) € T

• receivedMsg(cr) = TRUE, if a message needed for operation(a) is in Cur
rentEnvInput (in the message queue of the corresponding object).

• canExecute(cr) =receivedMsg((j)&a.Assertion.Condition, where o is a situa
tion.

• begin Execut ion(a) - removes the message needed for operation(a) from Cur
rentEnvInput (from the message queue of the corresponding object).

• finalizeExecution(a) ֊ changes the state of the corresponding object and adds 
the Object Reaction of operationfa) to CurrentEnvInput (CurrentEnvInput = 
CurrentEnvInput Object React ion).

• executed(cT) = TRUE, if duration(operation(a)) time has passed from the cor
responding beginExecution(cr).

• addfdest, sitBatch) - adds ah situations of the situation batch sitBatch to the 
set dest (no duplications).

• remove (source, sit) - removes situation sit from the set source.

• niovefsit, source, dest) - removes situation sit from the set source and adds 
to the set dest (no duplications).

• foreach(<7. cond(a)) - iterates sequentially over any situation a for which a 
given condition over o — cond(a) is true, according to the order defined in S.

Execution Algorithm
Pending = Running = 0;
CurrentEnvInput = InputScene.Envlnput; 
add (Pending, bs);
for(t - InputScene.t; ; ++t) 
begin

foreach(cr, a eRunning & executed(cr)) 
begin

finalizeExecution (a);
remove (Running, (?);
add (Pending, nextNode (cr));



foreach(tr, a € Pending & canExecute (cr)
& t E a.Assertion.TimeConstraint
& (V<7! e Running (7i .object^ a. object)) 

begin
move(a, Pending, Running);
beginExecution(a);

end

if(Running = 0 & 
exit;

end

(Va €Pending-<canExecute((7)))

The execution is successful if Pending = 0 at the end, otherwise the execution 
is failed For a successful execution, the result of the algorithm is the last scene 
before the end of the algorithm (output scene). The tuple (Pending, Running, 
CurrentTime, CurrenlEnv Input) will be called an execution slate of the algorithm.

Two processes defined over the same environment will be called functionally 
equivalent if and only if for every input scene the execution of both processes either 
fails or the environment inputs and environment states in output scenes are equal 
for all interpretations.

We will denote the equivalence of and P2 as Px P2.
The functional equivalence problem for the case when there are no commu

tative objects in a given environment was considered in [9] for a more simplified 
model. It was shown, that the problem could be reduced to the equivalence prob
lem of multidimensional multitape automata, which is solvable [8]. It will be shown 
below, that the result also holds when the introduced extension is considered.

The equivalence problem in environments with commutative objects will be 
also considered below.

An equivalent representation of a process, named sequential execution scheme 
of the process - SESP, is defined next. This representation is more convenient for 
further considerations.

Let P = (O, E, B, T, 6,) be a process and E = {ai,... ,Let also = 
{fo, Tn* Atjn € {0,1,2,...}} is a time constraint for a given situation cr։ of E. Let 
Af be the least common multiple for all tQ be the maximum of all t0,՛

The set of states of the SESP(P) corresponds to the set of execution states of 
the execution algorithm (taking into account the periodicity of time constraints). 
It is defined as 2E x R x T x {Env Input}, where 2E is the set of pending situations, 
R = {[(<7i, Ti),..., (ob, rb)]|a։. object cjj.object, 0 < r։ < duration(pperation(ai))} 
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is the set of running situations (7; is the time remaining for the completion of 
operation(a։)), T = {0,... , Zq 4- At — 1} is the set of possible values of current 
time, {Envlnput} is the set of current environment inputs. Let NextT(t) = t 4֊ 1 if 
t < tQ 4֊ St - 1, NextT(t) = t0 if t = t0 4- St - 1. A transition is defined from state 
5(i) = (p(O։/?(!), td), j£d)) to state s™ = (P™, R<2\t<2\ IE™), where pV,pW e

G R,t™,t™ e T,IEV,IE™ G {Envlnput}, if t™ = NextT(tV) and $<2> 
can be reached from s(1) by one step of the execution algorithm for t = t™ for some 
interpretation.

The execution algorithm is modified to work with SESP in the following way. 
As the sets Pending, Running and Gurr ent Envlnput are already encoded in the 
states of SESP, we just need to start from the state corresponding to the input scene 
and go to a next state corresponding to the Pending, Running and CurrentEnvlnput 
sets of the original algorithm, executing the operations and changing the states of 
objects as in the original algorithm.

Let StateT(t) = t if t < t0, StateT{t) = to + (f - tQ)modSt otherwise. Let 
InputState(Si) = (bs, 0, StateT(Si.t), Sj.Envlnput) be the state corresponding to the 
input scene $/, Output State(So) = (0,0, StateT(So-t), So-Envlnput) be the state cor
responding to the output scene So՛

The following lemma states the correspondence between a given process and 
its SESP.

Lemma 1 [9]. For every interpretation I and every input scene Sj:
a) if the execution of the process completes successfully with an output scene 

So, there is a path in the SESP from IS = InputState(Si) to OS = Outputs tat e(So), 
and the execution of the SESP with the input scene Sj reaches OS and vice versa;

b) if the execution of the process fails, the execution of the SESP never completes 
and vice versa.

3. Equivalence of Processes In Environments With Non-Commutative Ob
jects. A multidimensional multitape automaton modeling a given process P is built 
below.

The corresponding automaton A(P) has:

• one tape with an alphabet {0,1} for each condition, the dimension of which is 
the same as the number of objects that the condition uses (condition tapes);

• one 1-dimensional tape for each object for encoding the operation history; it 
will store operation and message pairs (operation tapes);

• one 1-dimensional tape for reading the start time, input and output messages 
from (I/O tape);
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• one 1-dimensional tape for each operation op, for encoding the function fop; 
it will store elements from the set {Reaction} (message tapes).

The set of states of the automaton A(P) consists of three subsets. These are 
a set of initialization states, which are used for reading the input scene time and 
messages, a set of states that are used to read the the output scene messages and 
a set of main states, used for modeling the execution of the process.

We will assume that the graph of main states of the automaton A(P) is divided 
into subgraphs - blocks that correspond to the states of the SESP. The block cor
responding to the state s is denoted B(s). Each block has one start state, and the 
only transitions possible between blocks are to a start state. If there is a transition 
from state s to state s' in the SESP, then there is a transition from block B(s) to 
block B(s'). Below the actions performed in each block are described.

The value of the condition is read from the corresponding condition tape (the 
heads on condition tapes are not advanced at this point). The output messages 
(reactions) are read from the corresponding message tapes. Upon completion of an 
operation, each head on the condition tapes which use the active object (the object, 
an operation of which just completed) is advanced in the direction corresponding to 
that object, and the corresponding operation-message pair is read from an operation 
tape.

The automaton starts by reading the input scene and getting to the corre
sponding block. After successful execution (the automaton gets to a block cor
responding to the end situation batch be), the automaton reads the output scene 
messages from the I/O tape and compares them to the current messages. If they 
match, then the tapes are accepted, otherwise, they are rejected.

Lemma 2. The positions of heads of the automaton A on the condition and 
message tapes are uniquely determined by the positions of heads on operation tapes.

Let y = ((j/n, 1/12,...j/n2,...)) be the sequences of operation- 
message pairs of all objects. We will say, that a filling of the tapes models an 
interpretation, bounded by y, if these operation-message pairs are written on the 
operation tapes, the message functions are written on the message tapes and the 
values of the cells of condition tapes, corresponding to any subsequences of y, 
equal the values of conditions for that interpretation after performing the oper
ations on the given messages. Let I be an interpretation, Si be an input scene, 
y - ((2/11,3/12» •••)»•• • »(2/niiJ/n2i • ••)) be the sequences of operation-message pairs, 
that the process would perform for I and Sj.

Lemma 3. For the automaton A(P) working on a filling of tapes modeling I 
and bounded by y, if in the ith step of the execution of the SESP s is the active state, 
then in the sequence of active blocks of A the ith would be B(s) and vice versa.

Lemma 4. If a filling of the tapes is such, that there is no interpretation for 
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which the filling is modeling, bounded by some sequences of operation-message 
pairs, then for any process P corresponding to the signature of tapes, the corre
sponding automaton A will never stop on the filling.

Let Pi and P2 be two processes, A(Pi) and A(P2) be the corresponding multi
dimensional multitape automata, constructed in the above-mentioned way.

Theorem 1. PY ~ P2 o A(Pi) ~ A(P2).
Proof. ,4(Pi) ~ A(P2) => Pi ~ P2. It follows from Lemma 3.
Pi P2 => A(P1) ~ A(P2). Let Pi ~ P2, and p is a filling of the tapes on which 
stops. We'll show that A(P2) also stops on that filling and the positions of 

the heads are the same.
According to Lemma 4, there is an interpretation /M, for which p is modeling, 

bounded by the sequences of operation-message pairs of p. From P{ ~ P2 will 
follow that P2 gives the same results as P} for all input scenes for 4, hence .4(P2) 
stops for all I/O tape fillings (and p) as A(Pi). The same positions of heads of the 
two automata follow from Lemma 2.

4. SESP Modeling Via Regular Expressions Over A Partially Commutative 
Alphabet. Let Y be a finite alphabet, Yi,...Ym be the partition of the alphabet 
Y on disjoint non-commutative subsets by a relation p. Y is named a partially 
commutative alphabet [11]. Let Ri and R2 be regular expressions in the alphabet 
Y. If for every word w € Ri there exists a word w' 6 R2, that coincides to w within 
commutation of symbols from different subsets of the alphabet Y and, vice versa, 
if for every word w' 6 R2 there exists a word w e Ri, that coincides to w within 
commutation of symbols from different subsets of the alphabet X then regular 
expressions Ri and R2 are named p-equivalent and denoted by Ri R-i(p) [11]

The set of all operations of all objects of an environment 6 will be de- 
r? m j

noted by 0op = U U Oj.opj. Let Y be a partially commutative alphabet [11], 
։=1 j-i

Y = U U{op.1,.--"Poro‘lo"(o“”,,)} where op^... oP^՝‘rat՝on{o“”,l)) is a representation 
1=1 j=l

of a given operation j of object i as a sequence of sub-operations that are executed 
I -x (i) (1) (2)within one time unit of the operation duration. Evidently, it o, .opj * ot .op, = 

oj2).op’2) ♦ op’.opj1’ then opjopJI’, = PpJJj,op.^J,•
It is easy to transform a given SESP into a regular expression over the alphabet 

Y: it is requested just to add for each node transitions for missed operations leading 
to the endless loop. For a given SESP P the corresponding regular expression will 
be denoted R(P). The figure below demonstrates the transformation from a source 
process to an automaton that recognizes the corresponding regular expression.

Lemma 5. For any SESP Pi and P2 in the environment 6 with commutative 
objects Pi /?1(Pl)~«2(P2)(p).

Proof. P| ~ P2 => Ri(Pi) ~ P2(P2)(p). Suppose the contrary; processes Px and
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P2 are equivalent, but the corresponding regular expressions R\(P\) and /?2(P2) are 
not. The latter, according to the definition, means that there either exists a word wi 
from that does not coincide, up to commutation of symbols from different 
subsets of the alphabet, with any other word W2 from or vice versa. Let's 
assume that the first case takes place.

Sequences of suboperahons forop։ andop2

op^op^..op{dura,,on^)

op2 =oP^...op^n"°n{op^

Fragment of the automaton

Fragment of a source process P corresponding to regular expression R(P}

This, in its turn, according to the transformation of the source process to an 
automaton, means that there exists at least one sequence of operations of process 
P՝t, that corresponds to the word ?ui from R\(P\), which does not have correspond
ing, in terms of affecting the environment, sequence of operations in process P2. 
This contradicts to the assumption that processes P\ and P2 are equivalent.

As R\(P\) ~ /?2(P2)(p) => P} ~ P2 is evidently true, due to the transformation 
algorithm depicted above, the lemma is proved.

5. Equivalence of Processes In Environments With Commutative Objects.
Theorem 2. If there exist two commutative objects in an environment 0 with 

more than one operation then the equivalence problem of processes in the environ
ment is unsolvable.

This can be proved using the technique similar to [10], i.e. via reducing 
the considered problem to the equivalence problem of non-deterministic multitape 
automata.

Theorem 3. The problem of functional equivalence of processes in an environ
ment with commutative objects, when there is only one object with more than one 
operation, is solvable.

Per Lemma 5, to prove this theorem, it is sufficient to show that the prob
lem of equivalence of regular expressions over a partially commutative alphabet is 
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solvable. This is proved in [11]. For the maturity of consideration, the main idea 
of the proof along with necessary definitions is adduced below.

Let r be a positive integer, W = {0,1,...}. The set Nr is called an r- 
dimensional tape. Any element of Nr - (a1։... ,ar) is called a cell of the tape and 
the numbers at,... , ar are called the coordinates of the corresponding cell. The 
cell (0,... ,0) is the initial cell. Let X be a finite alphabet. Any mapping Nr —* X 
is called a fill of the tape with the symbols of X.

Let A =< Y, S, 6, F, sq > be a deterministic automaton, that recognizes exactly 
the regular expression R in the input alphabet Y, with the set of states S, the 

n 
transition function 6, the set of final states F and the initial state s0. Let Y = |J Yt, 

where |Yi| > 2, |y,| = 1, i = 2,... ,n. |Yi| is denoted by q. Consider (n -+■ q - 1)- 
dimensional tape TV71^՜1. q dimensions of the tape are used for expressing the 
movement on symbols from Vi, and the rest n—1 dimensions are used for expressing 
the movement on symbols from Yit i = 2,... ,n.

Binary representation of cell coordinates, adduced in [7] is used The binary 
representation of the initial cell is (0,... ,0). The binary representation of any other 
cell is built basing on the binary representation of the predecessor of the given cell 
as each cell has only one predecessor. The length of the code of a coordinate of a 
cell is either equal or greater by one than the length of code of the corresponding 
coordinate of the predecessor.

The cell = (an,... , ain4.q_i) is called the predecessor of the cell a2 - 
(021,... ,o2n+g_1), and the corresponding predicate, denoted by 7r(ai.a2), has the 
value true, if and only if, 3j G {1,... , n 4- q - 1}, k = 1,... , ji — 1. j+ 1,... , n 4֊ q - 1, 
that

J) <*2k = <*lk-
2) = Qjj 4՜ (L 4- 1), if J ~ k, L — Qu 4՜ ... 4՜ Oin+q—1՛
If 7r(aba2) is true, and the cells ai and a2 differ by the coordinate j, then this 

is represented by the new predicate 7r;- as 7tj(ai,a2) is true.
The partially mapping y : Nn -> 2s is called the set of all execution traces of 

the automaton A, if and only if:
1) ^(0,... ,0) = {so}. P(0........0) = 0
2) Va € Nn \ {0,... ,0}, P(a) = is true, j = ,nk. k <

n + q- 1}. </?(a) =
The finite subset of execution traces, where the sum of coordinates of each 

cell is less or equal to, k — 1, will be called an (execution) trace word of length k. 
The set of all trace words is denoted by The set of all cells, used in the given 
trace word u is denoted by tlw.

The part of a trace word cu, where sum of coordinates of each cell is equal to 
k, is called the kth diagonal of the trace word u and denoted by 4(a;). The length 
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of is equal to k 4- 1. The length l(w) of a trace word cu is equal to the number 
of the diagonals it contains.

For a given trace word u a path p = apx ... aPm, m > 1, aP} 6 l/u, j € , m}
is defined as sequence of cells where ipaPv, v = 1,... , m ֊ 1.

For a given path p = apx ... aPm the word xp = yPx... the alphabet
Y is called the characteristics of the path p if and only if, Vj E {I,... , m}, i E 
[1,... ,n + g - 1}: ‘ ֊J.®

1) yP) € Y։ , i 1 => QPj+i[i] = aPj+i[ij 4֊ 1,
2) yPj £ i ~^p7+i p] — otPj [i] 4՜ (Z/ 4՜ I)»
/. = aPj|l] + ... + aP)[n+ <7 - 1].
The path p = apx ...aPm is called complete, if aPJ = (0,... ,0). A complete 

path p = aPl ... aPm is called accepted by the automaton A, if ^(^pm) contains final 
state of automaton 4. The coordinates of cell are called canonical form of the /'rn
complete path p = oPx ... aPm.

For each automaton .4, the set of all accepted paths in a trace word is 
denoted by APa(lj), and the set of their canonical forms - CFApA(„).

Suppose that automata 4i and A2 recognize exactly regular expressions Rx 
and R2, correspondingly, and Sb S2 - are their sets of states. Also suppose that 
k = 25 - 1, where S = |S։| 4- IS2I, u'j and uj2 are trace words of automata 4i and 42 
of length A՝.

Lemma 6. C1'apAi(ui) = CFap^^) <=> Ri ~ #2(p).
Assume R} is not ^֊equivalent to R2, and there are no canonical forms of paths 

of the length less or equal to k in trace words and w2 that are recognized by 
the automaton 4b but are not recognized by the automaton A2, or, vice versa, are 
recognized by the automaton 42, but are not recognized by the automaton 4b

Due to assumption there is a canonical form of corresponding complete paths 
P՝J] = aPi • • • aPm with a length greater than k, m > k, which is recognized by one of 
the automata, say4b but is not recognized by the automaton 42. This means that 
^i(aP,n) contains final state of automaton 4], whereas ^A2^Prn) does not contain 
a final state of the automaton 42. As m > k, there exist two cells and aP 
in the path p, such that the sum of coordinates of the cell ) is greater than 
the sum of coordinates of the cell = <pAj(aP')), j = 1,2, and p(;) =
aP1 ... aP՝*... a(j'l... a r 1 Pm

Let xtf be the characteristics of the sub-path .. aPni of the path p,
and p[J } ...a" is a path starting from the cell a, to some cell a", which has
the same characteristics yp \ It is evident that such a path exists. The sub-path 
of the path p, which starts from apx and ends with the predecessor of the cell 
is denoted by L The concatenation of two paths p^՛ > n p{j՛ 1 is denoted by 
piiw = p(j }p^' }. It's length is less than the length of the initial path p^X Evidently,
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Vai (a") = PAitaprJ contains the final state of the automaton Xb and (^2(a") = 
'pAitupm) does not contain the final state of the automaton A2. If the length of 
the path priew is still greater than k, similar considerations shall be performed until 
the obtained path has a length not exceeding k. But this contradicts to the initial 
suggestion that if a path is accepted in trace words by the automaton A} Then 
there exists another path with the same canonical form which is accepted by the 
automaton Ay € {1,2}, j ± j՛.

As the assumption Rx ~ R2(p) => CFAPAiM = CFAPa^ is obviously true, 
lemma is proved.

Yerevan State University
Institute for Informatics and Automation Problems NAS RA

H. A Grigoryan, A S. Shoukourian

Equivalence of Processes in Object-Oriented Environ II ents with Commutative and
Non-Co II mutative Objects

The equivalence of processes is an important constituent of process optimization. 
Functional equivalence problem for processes in object-oriented environments is consid
ered. Two cases are investigated: when the turn of executing operations for objects is 
essential and when for some objects it is not essential. In the latter case the objects are 
named commutative. It is shown that the equivalence problem for environments that con
tain two or more commutative objects with more than one operation is insolvable. It is also 
shown that if there is only one object with two or more operations among commutative 
objects then the equivalence problem is solvable.

Հ. Ա. Գրիգորյան, Ա. Ս. Շուքուրյան

Պրոցեսների համարժեքությունը կոմուտատիվ եւ ոչ կոմուտատիվ օբյեկտներով 
օբյեկտակողմնոըոշված միջավայրերում

Պրոցեսների համարժեքությունը դրանց օպտիմիգացիայի կարեւոր բաղկացուցիչ է: Այս 
հոդվածում դիտարկված է պրոցեսների ֆունկցիոնալ համարժեքության խնդիրը օբյեկտա- 
կողմնորոշված միջավայրերում: Ուսումնասիրված են երկու դեպք երբ օբյեկտների համար 
գործողությունների կատարման հաջորդականությունը կարեւոր է, եւ երբ, ինչ-որ օբյեկտնէտի 
համար, այն կարեւոր չէ: Վերջին դեպքում օբյեկտները կոչվում են կոմուտատիվ. Ցույց է 
տրված, որ պրոցեսների համարժեքության խնդիրը լուծելի չէ այն դեպքում, երբ միջավայրում 
գոյություն ունեն երկու կամ ավելի կոմուտատիվ օբյեկտներ, որոնք ունեն մեկից ավելի 
գործողություն: Ցույց է տրված նաեւ, որ եթե կոմուտատիվ օբյեկտների մեջ գոյություն ունի 
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միայն մեկ օբյեկցւ երկու կամ ավե[ գործողություններով, ապա համարժեքության խնդիրը 

|ուծեփ է:

Г. А. Григорян, А. С. Шукурян

Эквивалентность процессов в объектно-ориентированных средах с 
коммутативными и некоммутативными объектами

Распознавание эквивалентности процессов является важной составляющей их 
оптимизации. В статье рассмотрена проблема функциональной эквивалентности 
процессов в объектно-ориентированной среде. Исследованы два следующих случая: 
когда очередность выполнения операций для объектов важна, и когда для некоторых 
объектов она не имеет значения. В последнем случае объекты называются 
комхмутативными. Показано, что проблема эквивалентности в средах, содержащих 
два или более коммутативных объекта с более чем одной операцией, неразрешима. 
Также показано, что если среди коммутативных объектов существует лишь один 
объект с двумя или более операциями, то проблема эквивалентности разрешима.
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