ЦЗЦИВЦЬ ФРОПРОВЛЕНИЕНАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИНАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИNATIONAL ACADEMY OF SCIENCES OF ARMENIAДОКЛАДЫ254ЛЕЗЗЪБРКЕРОКТЗ

TOM 108

2008

Nº 3

ХИМИЧЕСКАЯ ФИЗИКА

УДК 541.124.7.519.6

Руб. Т. Малхасян, академик И. А. Варданян

Моделирование и анализ явления отрицательного температурного коэффициента скорости реакции окисления метана

(Представлено 23/IV 2008)

Ключевые слова: метан, окисление, моделирование, поверхность, радикал

Сптимизация процесса получения ценных кислородсодержащих соединений из метана (экологически более чистого химического сырья, чем высшие утлеводороды) связана не только с экспериментальным, но и с теоретическим исследованием механизма окисления этого углеводорода [1-3]. Некоторые явления, такие как холодные пламена, отрицательный температурный коэффициент (ОТК) скорости реакции, характерные для окисления высших утлеводородов, трудно поддаются экспериментальному изучению в случае метана [4]. На наш взгляд, одной из причин этого является влияние природы и состояния поверхности реакционного сосуда на кинетику процесса.

Это предположение было проанализировано нами ранее [5] на примере концентрационных колебаний, возникающих в системе метан – кислород В зависимости от скоростей гетерогенных радикальных стадий менялись динамические режимы окисления метана от автоколебаний до затухающих или раскачивающихся колебаний.

В настоящей работе поставлена задача проанализировать возможность и причины появления ОТК в реакции окисления метана на основе моделирования этой реакции с помощью программы VALKIN [6]. В этой программе интегрирование системы дифференциальных уравнений проводилось с помощью вычислительной подпрограммы ROW-4 A [7]. С целью объяснения причин появления ОТК, а также выяснения возможности практического применения полученных результатов нами была использована схема реакции

229

.

Таблица 1

		A	n	E
1.	$C + O_2 \rightarrow CH_3 + HO_2$	1E-012	0	230
2.	$CH_3 + O_2 \rightarrow CH_3O_2$	4E-013	0	0
3.	$CH_3O_2 \rightarrow CH_3 + O_2$	1E+014	0	109
4	$CH_3O_2 + CH_4 \rightarrow CH_3OOH + CH_3$	1E-010	0	82
5.	$CH_3O_2 + CH_2O \rightarrow CH_3OOH + HCO$	1E-013	0	0
6	$CH_3OOH \rightarrow CH_3O + OH$	1.5E+012	0	169
7.	$CH_3O + O_2 \rightarrow CH_2O + HO_2$	5E-014	0	0
8.	$CH_3O \rightarrow CH_2O + H$	1E+013	0	125.4
9	$OH + CH_4 \rightarrow CH_3 + H_2O$	1E-010	0	35.5
10.	$OH + CH_2O \rightarrow HCO + H_2O$	1.27E-010	0	10.4
11.	$CH_3O + CH_4 \rightarrow CH_3OH + CH_3$	3E-012	0	46
12.	$CH_3O + CH_2O \rightarrow CH_3OH + HCO$	6.4E-015	0	12.5
13.	$HCO + O_2 \rightarrow CO + HO_2$	1E-013	0	0
14.	$HO_2 + CH_4 \rightarrow H_2O_2 + CH_3$	3E-010	0	96
15.	$HO_2 + CH_2O \rightarrow H_2O_2 + HCO$	1.9E-011	0	54
16.	$H_{1}O_{2} + M \rightarrow OH + OH + M$	283E-007	0	193.5
17.	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	3E-012	0	0
18	$CH_3OOH \rightarrow P_1$	0.1	0	0
19.	$H_1O_2 \rightarrow P_2$	0.2	0	0
20.	$CH_3O_2 \rightarrow P_3$	1	0	0
21.	$HO_2 \rightarrow P_4$	1	0	0
22.	$H + CH_2O \rightarrow H_2 + HCO$	1.33E-010	0	18
23.	$CH_3 \rightarrow P_5$	100	0	0
24	$CH_3O_2 + CH_3O_2 \rightarrow CH_3O + CH_3O + O_2$	1.75E-013	0	0
25	$CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$	5E-012	0	0
26.	$CH_2O + O_2 \rightarrow HCO + HO_2$	7.5E-11	0	171
27	$OH + H_2O_2 \rightarrow H_2O + HO_2$	1.7E-11	0	7.5
28	$HO_2 + CO \rightarrow CO_2 + OH$	1.1E-009	0	96
29	$HO_2 + CH_3OH \rightarrow H_2O_2 + CH_2OH$	1E-12	0	48
30.	$H + O_2 + M \rightarrow HO_2 + M$	1E-32	0	0
31.	$OH + CO \rightarrow CO_2 + H$	5E-13	0	33
32	$H + CH_4 \rightarrow H_2 + CH_3$	5E-009	0	49.7
33	$H + CH_3OH \rightarrow H_2 + CH_2OH$	2E-12	0	35.5
34	$CH_2OH + O_2 \rightarrow CH_2O + HO_2$	1.6E-11	0	125
35	$CH_3 + CH_3 \rightarrow P_6$	3E-11	0	0

окисления метана, рассмотренная ранее в работе [8]. В данной работе расчет схемы реакций проводился с помощью метода Рунге — Кутга и хорошо

описызал экспериментальные данные тех же авторов. В табл. 1 приводятся эта модель и значения констант скорости отдельных стадий

Это соответствие расчетных данных экспериментальным являлось для нас в дальнейшем критерием правомочности наших рассуждений при изучении ОТК на примере этой модели.

Константа скорости представляется в форме

 $k = A \cdot T^n \quad (\exp - E/RT),$

где A — предэкспонента, E — энергия активации, R — универсальная газовая постоянная, T — температура (K).

Константы скорости для мономолекулярных, бимолекулярных и тримолекулярных реакций даются в следующих единицах: с⁻¹, см³/частица с, см⁶/частица²с, соответственно, *Е* - кДж/моль.

Таблица 2

Продукты	HO ₂	H_2O_2	CH ₃ OOH	CH ₂ O	CH ₃ O ₂	CH ₃
Частица/см ³	$\times 10^{13}$.	$\times 10^{15}$	$\times 10^{14}$	$\times 10^{15}$	$\times 10^{12}$	$\times 10^{12}$
Эксперимент	1	9	13-15	20	0	0
Расчет	1.3	10.6	11.4	7.1	1.6	6.6

Поскольку в настоящей работе применялся другой метод решения дифференциальных уравнений, с помощью которого описывался механизм реакции окисления метана, то в первую очередь были воспроизведены экспериментальные данные работы [8]. Нами также было получено хорошее согласие расчетных данных с экспериментальными. Сказанное иллюстрирует табл. 2, в которой представлены экспериментальные и расчетные результаты реакции окисления метана при 738 К.

Рис 1. Зависимость скорости расходования метана (частица/см³с) от температуры

- $[CH_4]_0 = 3.2 \cdot 10^{18}$ частиц/см³, $[O_2]_0 = 1.28 \cdot 10^{18}$ частиц/см⁻

Затем был смоделирован процесс в зависимости от температуры в широком интервале температур 600 — 900 К. На рис. 1 представлена зависимость скорости расходования метана от температуры.

и з полученных данных следует, что в диапазоне от 650 до 775 К скорость реакции растет, достигая максимального значения при 775 К, затем наблюдается ее уменьшение.

F а рис. 2 представлена зависимость максимальных концентраций радикалов HO₂ и RO₂ от температуры.

Как видно из сравнения рис. 1 и 2, изменения значений концентрации радикалов, в особенности радикалов RO₂, следуют за ходом изменения скорости расходования метана в основном в области более низких температур (650-72.5 K).

Как показали расчеты, изменение значения константы скорости k_3 распада радикалов CH₃O₂ влияет на положение ОТК. В отсутствие реакции распада метилпероксидных радикалов скорость процесса в изученном интервале температур непрерывно растет, т.е. явление ОТК не наблюдается, что свидетельствует о том, что стадия 3 является необходимым условием появления ОТК. Замена в k_3 значения энергии активации 109 кДж/моль на 131 кДж/моль, приведенная в работах [2,3], как показали наши расчеты, вызывает изменение абсолютных значений концентраций реагентов и продуктов и несколько смещает область ОТК в сторону более высоких температур Расход метана и концентрации продуктов реакции увеличиваются.

Из полученных данных, как и ожидалось, следует, что причиной ОТК является конкуренция реакций образования и распада радикалов CH₃O₂.

Нами также проанализировано влияние стадий

$$H + O_2 \to OH + O,$$

 $O + H_2 \rightarrow OH + H,$ $OH + H_2 \rightarrow H_2O + H$

с участием атомов H и O на положение OTK в исследованном интервале температур и в особенности в области высоких температур, где ожидалось их более сильное воздействие. Из полученных нами результатов следует, что вклад этих стадий в данной области температур несуществен.

С практической точки зрения результаты моделирования позволяют сделать также некоторые выводы об оптимальных условиях получения формальдегида. На рис. 3 представлена зависимость максимального выхода формальдегида от температуры.

Рис. З. Зависимость максимального выхода формальдегида (частица/см³) от температуры

Как видно из рис. 3, наибольший выход формальдегида получается в интервале температур 825 — 875 К (область ОТК), составляя при 850 К и расходе метана примерно в 10¹⁷ частиц/см³ — 10.0%, в то время как при 738 К при том же расходе горючего он равняется 6.7%. Можно утверждать, что реализация процесса окисления метана в области ОТК с целью получения высокого выхода CH₂O обладает тем преимуществом, что большая часть израсходованного метана переходит в формальдегид.

Ранее [5] нами было высказано соображение, что целевой продукт – СН₂О является ингибитором процесса окисления метана, поскольку его взаимодействие с радикалом СН₃О₂ приводит к замене его в конечном счете на менее активный радикал НО₂. В области ОТК абсольтное количество радикалов RO₂ хотя и уменьшается, но уменьшается и скорость ингибирования, т.е. расходование формальдегида через этот канал. однако активизация других стадий, в особенности стадии 5, с повышением температуры способствует увеличению скорости образования формальдегида, а отсюда

и увеличению выхода CH₂O.

Что касается поведения метанола и его зависимости от изменения температуры, то ход его максимальной концентрации повторяет ход максимальной скорости расходования метана. Выход его составляет 1.07 · 10¹⁶ частиц/см³ при 750 К и времени реакции t = 200 с. В дальнейшем концентрация метанола с повышением температуры уменьшается, составляя 3.5 1015 частив/см³ при = 850 К и том же времени реакции. Отсюда можно сделать вывод, что поиск оптимальных условий для получения высокого выхода СН₃ОН в области ОТК невыгоден.

Сбобщая полученные результаты, можно сказать, что моделирование многостадийного процесса позволяет не только выявить условия, при которых возможно явление ОТК, но и изучить характерные особенности процесса в этог области с точки зрения получения оптимального выхода ценных кислородсодержащих продуктов, являющихся промежуточными продуктами окисления метана. Так например, выход CH₂O в области OTK, как видно из полученных данных, возрастает в 1.5 раза.

Институг химической физики им. А Б Налбандяна НАН РА

Руб. Т. Малхасян, академик И. А. Варданян

Моделирование и анализ явления отрицательного температурного коэффициента скорости реакции окисления метана

Изучена реакция окисления метана в широком интервале температур 600-900 К Данная реакция смоделирована с использованием программы VALKIN. Обнаружено явление отрицательного температурного коэффициента (ОТК) в интервале 775-850 К Выяснено, что за эгот феномен ответственна конкуренция реакций образования и распада радикалов СН3О2. Показано, что наибольший выход формальдегида наблюдается в области ОТК.

Ռուբ. Տ. Մալխասյան, ակադեմիկոս Ի. Ա. Վարդանյան

Մեթանի օքսիդացման ռեակցիայի մոդելավորումը և արագության բացասական ջերմաստիճանային գործակցի երևույթի վերլուծությունը

Ու սումնասիրված է մեթանի օքսիդացումը ջերմասփիճանի լայն փիրույթում՝ 600 – 900 К Տվյալ ոեակցիան մողելավորված է VALKIN ծրագրի օգնությամբ։ 775-850 K փիրույթում հայտնաբերվել է բացասական ջերմաստիճանային գործակցի (ԲՋԳ) երեւույթը։ Պարզվել

է, որ այդ երեւույթը CH₃O₂-ի ռադիկալների առաջացման եւ բայքայման ռեակցիաների մրցակցության արդյունք է։ Յույց է տրված, որ ԲՋԳ-ի տիրույթում ֆորմալդեհիդի ելրը մեծագույնն է կազմելով 850 K ջնրմաստիճանում ծախսված մեթանի 10.0%

Rub. T. Malkhasyan, academician I. A. Vardanyan

Modelling and Analysis of Phenomenon of Negative Temperature Coefficient of Rate of Methane Oxidation Reaction

Reaction of oxidation of methane in a wide range of temperatures 600-900 K using the program VALKIN has been investigated. The negative temperature coefficient (NTC) phenomenon in the range of 775-850 K has been revealed It was found out, that the competition of reactions of formation and decay of radicals CH_3O_2 is responsible for this phenomenon. It is shown, that the greatest yield (10.0%) of formaldehyde is observed in the field of NTC.

Литература

1. Vedeneev V.I., Arutyunov V.S., Basevich V. Ya - Chemical Physics Reports 1997 V.16. N 3. P. 459-481.

2. Веденеев В.И., Гольденберг М.Я., Горбань НИ, Тельтельбоїм МА Кинетика и катализ. 1988 Т. 29. Вып 1. С. 7-15.

3. Basevich V. Ya., Vedeneev V.I., Arutyunov V.S. - Chemical Physics Reports. 1995 V. 13. P. 1502-1508.

4. Vanpee M. - Chemical Engineering Departmen, University of Massachusetts. Amherst, MA. 01003, 1991.

5. Малхасян Руб.Т., Эксузян Ш.Р., Варданян И.А. - ДНАН Армении 2006. Т. 106. N 3. C. 252-257.

5. Tavadyan L.A., Khachoyan A. - Chemistry and Physics of Lipids 2007 V 47 P. 30-45.

7. Gotwald B.A., Wanner G. - Simulation. 1982. V 37. P. 169-176

8 Vardanyan I. A., Nalbandyan A.B. - International Journal of Chemical Kinetics 1985, V. 17. P. 901-924.

