
ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԳԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИ NATIONAL ACADEMY OF SCIENCES OF ARMENIA ДОКЛАДЫ ԶԵԿՈՒՅՑՆԵՐ REPORTS
мммм^ммммм^мв «мм—м—нммвммм«м_——мммшммшммммм^мм «мммммммммммм-мииив֊^^вв^м^вм^^м^м^м^ммм^м^^м^мм^^м^^ммим^мм^мм^^^мми^м^ммв аимммммм^ивмми^вмм

Ж£ 108 2008 No I

MATHEMATICSУДК 519.681 H. A. Grigoryan
Equivalence of Processes in an Object-Oriented Environment(Submitted by academician S.K. Shoukourian 18/1 2008)Keywords: process, equivalence, multitape automata, multidimensional automata,

object-oriented environment

1 . Introduction. The equivalence of processes is important for the process optimization. Among various models of processes (1] a model is chosen which is defined over an object-oriented environment [2]. The article considers the prob­lem of process equivalence within the mentioned model. Some items of r.he model, which were not concisely defined before, are formalized and formal semantics of processes is adduced for the considered case. Some restrictions to tim ng, which do not violate the idea of Virtual Factory and are coordinated with the author of the model, are introduced. The problem of process equivalence is formulated and it is shown that this problem can be reduced to the equivalence problem ol automata with multidimensional tapes, where the motion of the heads is monotone (no back­ward motion) in all directions (multidimensional multitape automata - MMA) [3]. In its tarn the latter problem is solvable [4,5].2 Model Definition. The following model equations are defined:
Object =
MSG
Operation =
Duration =
Environment =

(ID, [State}. {Operation})
..........msgk}

{State} x MSG - {State} x 2MSG
{Operation} —♦ {1,2,...}
{Object}The state sets and operation sets of different objects are considered disjoint. Enviro iments containing finite set of objects are considered further. Let G =
50

{oi,.. >°n} be an environment.
EnvState =
EnvStateSet =
T imeConstraint =

BasicFred =
Condition —
Assertion =
Situation =
Sit uation Batch =
Scene =

State..........on.State)
ox StateSet x ... x on.StateSet{to + n-At|n € {0.1,2,... }} where (o and <ire non. negative integers{*’’• • • ,Kr}’ where is a predicate symbol of arity n 7r/o։։.State,.,. ,oin).State), where € BasicRred
(Condition, TimeConstraint)
(Object, Assertion)
{Situation}(t, EnvState, 2MSG)

A process over an environment © is a tuple P = (©, $3, B, r.b,,. where. E - is an ordered finite set of situations, such that Va € E a.Object e O,
B - is a set of situation-batches, such that Vb e B b C E, be = 0 e B is the end situation batch,1 - is a relation {(<7,6, G E}, where b G B, a> € o.Object.Operations,
bs - is the start situation batch.We will say that an interpretation is defined for a given process, if the following is defined:• initial EnvState : es0 = (s£\... ,st(on))• functions /op : {oi.State} x MSG —♦ {o,.StateSet} x 2Ar" for all operation symbols op of all objects, op G ot.Operation• functions p„} : ou.StateSet x ... x o^.StateSet —♦ {TRUE, FALSE] (n; is the arity of the corresponding predicate symbol) for all predicate symbols.3. Process Semantics. The semantics of a process interpretation is defined by the following execution algorithm. To ensure consistent execution of the process, concurrent execution of two and more operations of the same object is nz>t allowed So, in case if there are two pending situations, ready to be executed at the same lime, it must be chosen which one to execute first. The other situation should slay in a pending state. To implement this, the set of situations (E) is defined above as ordered, as well as corresponding checks are performed in the execution algorithmThe data structures and functions used in the execution algorithm are listed below.• InpulScene - the initial scene (input of the algorithm)• Pending - a set of situations that are waiting to be executed.51

• Running - a set of situations S', for which Ver € S', operation(rr) is currently running.• C urrentMessages - a set of currently available messages.• nextNode(e)= b, if (m b,u) € Г.• operation(a)= cv, if (cr, Ь.л) e Г.• receivedMsg(a)= TRUE, if a message needed for operation(a) is in Cur­rent Messages. :• canExecute(a)=TeceivedMsg(a) к a.Assertion.Condition, where a is a situa­tion.• beginExecution(a) - removes the message needed for operation(a) from Cur­rent Messages.• finalizeExecution(f7) - changes the state of the corresponding object and adds the output messages of operation^) to CurrentMessages.• executed(a)- TRUE, if duration(operation(er)) time has passed from the cor­responding beginExecution(ar).• add(dest, sitBatch) - adds all situations of the situation batch sit atch to theset dest (no duplications).• remove(source, sit) - removes situation sit from the set source.• move(sit, source, dest) - removes situation sit from the set source a id adds to the set dest (no duplications).• foreach(<7, cond(er)) - iterates sequentially over any situation 0 lor which a given condition over a - cond(<7) is true, according to the order de ined in E.Execution Algorithm
Pending = Punning = 0;CurrentMessages = InputScene. Messages;add(Pending, 6,);fcr(t = InputScene.t; ; 4-4-t)beginforeach(a, a € Running & executed(<7)) beginfinalizeExecution(a); 52

remove(Running, a);add(Pending, nextNode(or));endforeach(a, a G Pending & canExecute(a) & t€ <?• Assertion.TimcConstraint (V<7i G Running <Tj object/ ^.object)) beginmove(cr. Pending. Running);beginExecution(o՜);end
if(Running= 0 & (V<7 GPending lean Execute^))) exit;endThe execution is successful if Pending = 0 at the end, otherwise the execution is failed. For a successful execution, the result of the algorithm is the last scene before the end of the algorithm (output scene). The tuple (Pending, Running, CurrentTime, CurrentMessages) will be called an execution state of the algorithm4. Process Equivalence. Two processes defined over the same environment will be called functionally equivalent (equivalent) if and only if for every input scon՛ the execution of both processes either fails or the message sets and environment states in output scenes are equal for all interpretations.We will denote the equivalence of and P2 by Pi ~ P2.It will be shown, that in this case the equivalence problem of processes can be reduced to the equivalence problem of multidimensional multitape automata (ММЛ| and, thus, is solvable [4, 5]. The reduction will be done in two steps first - an execution scheme will be constructed for the process, second - the correspond mg MMA will be built.5. Sequential Execution Schemes of Processes. .An equivalent representation of a process (named sequential execution scheme of the process ■ SESP) will be constructed first. This representation is more convenient for further considerationsLet P = (е,£,Я,ГА) be a process and £ = {a։,... Le also /’, = {to. -f-n’At,|n G {0, 1,2,...}} is a time constraint for a given situation a, of L. Let △t be the least common multiple for all △/„ to be the maximum of all h>.-The set of states of the SESP(P) corresponds to the set of execution states of the execution algorithm (taking into account the periodicity of time constraint! i It is defined as 2E x R x T x 2MSG, where 2е is the set of pending situations, h

, (ab,rb)l|a,.object / arobject. 0 < n< durati^operafirm^))} is the set of running situations (r։ is the time remaining for the completion of <>/><
53

T = do + At - 1} is the set of possible values of current time, 2iW5<; is the set of current messages. Let NextT(t) = t + 1 if t < to + At - 1, NextT(t) = t0 if t = tQ 4֊ At — 1. A transition is defined from state s(I) = f(l\A4(1))to slate s(2) = (P(2\K(2\t<2),M<2>), where P<1\ P™ 6 2E, R(x\ R™ € /?, t<l>,t<2> €
T. Af(ll,A/(2) e 2MSG, if t(2) = NextT(tP>) and s(2) can be reached from .s(1) by one step ol the execution algorithm for t = t<։) for some interpretation.For example, the fragment of the SESP for the start fragment of a process in Fig. la is shown in Fig. lb. In the example MSG - {a}, durahon(x) = durat,on(y) = 2, S1 > s2, t + 1 = NextT(t).F = FALSE, T = TRUE.

a Assert =F & si A»5rt=F &

st Assert-T

S^, (sU),t4֊l,0

x(a>0y(a)=(a)
S2S3,0,t4֊2,0b)

$lS2.0lt0 siso.0.t,a

y(a)=0
SiS4,0t*2,0

a)=(a)SiSj.0t+l,0

Fig 1.The execution algorithm is modified to work with SESP in the following way. As the sets Pending, Running and Current Messages are already encoded in the states of SESP, we just need to start from the state corresponding to the input scene and go to a next state corresponding to the Pending, Running and CurrontMes-
sages sets of the original algorithm, executing the operations and changing the states of objects as in the original algorithm.Lat StateT^t) = t if t < tQ, StateT(t) = to + (t - to^odAt) otherwise. Let
InputState(Si) = (63.0, StateTlS/.t), Si.Messages) be the state corresponding to the input scene Sj, OutputState(So) = (0,0, StateT(So-t), So-Messages) be the state cor­responding to the output scene So-

Execution Algorithm for SESP
CurrentState = InputState(InputScene);
b?gin 54

//the execution is at state CurrentStateforeach(cr, (cr, r) €CurrentState. Running) if(r == 1)beginfinalizeExecution(cr);remove(CurrentState.Running, (a, r));add(CurrentState.Pending, nextNode(ry)); endelse
forcach(cr, cr ECurrentState. Pending & canExecute(a) & CurrentState.t E o.Assertion.TimeConstraint & (^(^i»Ti) ^CurrentState. Running object^ a.object)) beginremove(CurrentState.Pending, cr); add(CurrentState. Running,

(<J, duration(operation(a))֊l)); bcginExecution(operation(cr));endif(CurrentState.Runiiing= 0 & CurrentState.Pending 0) .» exit;CurrentState. t = NextT(CurrentState.t) end
The following lemma states the correspondence between a given process and its SESP.Lemma 1. For every interpretation I and every input scene Sy

a) if the execution of the process completes successfully with an outpu' scene Sq,
there is a path in the SESP from IS = InputState(Si) to OS = OvtputStar.e(So), and
the execution of the SESP with the input scene Si reaches OS and vice versa;
b) if the execution of the process fails, the execution of the SESP never completes
and vice versa. •F’roof. The proof is by induction on the number of steps taken. The St SI state InputState(Si) corresponds to the initial execution state ol the execution al­gorithm with an input scene 5/, and the transitions result in corresponding states, as can be seen from the two algorithms. The final SESP states Output Shift

55

have Punning = 0 & Pending - 0, so correspond to successful execution In case of failure of the execution of the process, the execution of the SESP will be reduced just to a loop between states, which differ only by time.6. Reduction of the Equivalence Problem of Processes to the Equivalence Problem of MMA. The definition of MMA from (3, 5] is adduced here for a convenience of reading Let d be a positive integer, N = {0,1,...The set Ard is called a d- dimensional tape. Any element of Nd - is called a cell of the tape andthe numbers <ii..........ad are called the coordinates of the corresponding cell. Thecell (0,... ,0) is the initial cell. Let X be a finite alphabet. Mappings Nd —♦ X are called fills of the tape with the symbols of X. . v<‘:՝The set S — {(n15 mJ,... , (nh,mh)}, where nl,ml (1 < i < h) are natural numbers and for all 1 < i, j < h, n, = n} <=> i = j, is called a signature of the MMA. The signature defines the quantity and arity of the tapes - if (i, j) € S, then the automaton with a signature S has exactly j i-dimensional tapes..4 =< Q = Qi U ... U Qm, X, qo, Qf. <p, > (Q * set of states (Qj contains those states in which the 1th tape is being read, Q, n Q} = 0, if i / j), X - input alphabet,
go - initial state. Q? - final states, : Q x X —♦ Q - transition function, : Q x A' —» • !.... ,c} - movement direction function) will be called a multidimensional multitape automaton (MMA) with signature S.The filled part of the d-dimensional tape, the sum of coordinates of each cell is less than or equal to i - 1, will be called a d-dimensional word of lergth i. The execu ion of the automaton will be considered on words of finite length. The m- tuple of multidimensional words (pi,... ,Pm) will be called an m-tape vvord with a signature S, if the number of u-dimensional words is v, and (u,v) 6 S. A word is accepted if the automaton is in a final state after reading the entire word If an automaton A (with any signature) accepts / doesn't accept the word w, it will be denoted as A(w) = 1 / A(w) = 0, correspondingly.?li and .42 multidimensional multitape automata will be called equivalent, if for every word w Ar(w) = A?(w), and the positions (coordinates) of the heads on all tapes are the same, if .4j(w) = -42(w) = 1. The equivalence of two automata will be denoted A։ ~ A2. ' ■ • . ՝•՛ ||/vn MMA modeling a given process P will be described below.The corresponding automaton A will have:• one tape with an alphabet {0,1}, for each condition the dimension of which is the same as the number of objects that the condition uses (condition tapes);• one 1-dimensional tape for each object for encoding the operation history; it will store operation and message pairs (operation tapes);

56

. one 1-dimensional tape tor reading the start time, input and output messages from (I/O tape);• one 1-dimensional tape for each operation op, for encoding the function / , it will store elements from the set 2MSG (the output message sets (message tapes).The set of states of the automaton A consists of three subsets. There are initialization states, which are used for reading the input scene time and messages, states that are used to read the output scene messages and the main states, used for modeling the execution of the process.We will consider the set of main states of the automaton .4 to be partitioned into blocks that correspond to the states of the SESP. The block corresponding to the state s will be denoted B(s). Each block has one start slate, and the only transitions possible between blocks are to a start state. There is a transition from block 3(s) to block B(s'). if there is a transition from state s to state s' in the SESP Below we will describe the actions in each block.The value of the condition is read from the corresponding condition tape (the heads on condition tapes are not advanced at this point) The output message sets are read from the corresponding message tapes. Upon completion of an operation, each head on the condition tapes which use the active object (the object, an oper­ation cf which just completed) is advanced in the direction correspond ng to that object, and the corresponding operation-message pair is read from an operation tape. The automaton starts by reading the input scene and getting to the corre­sponding block. After successful execution (the automaton gets to a block cor­responding to the end situation batch be), the automaton reads the ou pu> seem՝ messages from the I/O tape and compares them to the current messages It they match, then the tapes are accepted, otherwise, they are rejected.Lemma 2. The positions of heads of the automaton .4 on the condith •/, and
message tapes are uniquely determined by the positions of heads on opt ratn n
tapes.Proof. The positions of the heads on the condition and message tape s d< p< nd only on the number of operations performed by each object, so the lem na is trueLet y = ((yu,J/n,be the sequences of operation­message pairs of all objects. We will say, that a filling of the lapcs n d interpretation, bounded by y, if these operation-message pairs are writ er operation tapes, the message functions are written on the me.s>aq։ t<q values of the cells of condition tapes, corresponding to any subsequ equal Ihe values of conditions for that interpretation after pt rtorming

57

