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1. The Scale-Invariant and Semi-Group Properties. One of the important regularities of many large-
scale biomolecular systems is their itself organization. The conception of the self-organization
appears in the Phase Transition System Theory where, very often, systems spontaneously self-
organize themselves in fractals [1]. The similar situation may be observed in networks, in particular,
biomolecular networks. Here we often see the reproduction of properties of the networks on
previous fractal during the process of network's enlargement.

Let us more precisely introduce se/f-organized systems. In self-organized systems knowing the Jlocai
frequency distribution in two successive non-intersected intervals (fractals) we must able to obtain
the frequency distribution in the united interval (in the union of these intervals). It implies that we
can extrapolate the frequency distribution in whole system.

Definition 1. We say that a random variable & of events exhibits the Power Law {p}if

p,=PE=n}=c(p)-nP, 1<p<+o, n=12,.., (1.1)

where the normalization factor c(p) takes the value

c(p>=( D n_p)_l (12)
n>1

and P denotes probability.

A Power Law (1.1)-(1.2) was found to describe various events in the vicinity of critical points in
physical and chemical phase transition systems. For such systems Power Law is of interest also
because of its genetic property in the case of self-organization, which can be explained as follows.
The selection process cannot avoid the order exhibited by most members of the system. Here it is of
importance that Power Law is scale-invariant, implying that the knowledge of statistical properties of
any part of the complex system allows to extrapolate these properties to whole system.

The scale-invariant property means that the replacement of variable n in p_ by a new variable

m = s - n with arbitrary positive integer s doesn't change the functional form of frequency
distribution. For Power Law we have



1
=— P, P, (see (1.1)).
c(p)

%

m

The second regularity in self-organized systems is of the following type. The frequency distribution
must be of the same type in united interval as it is in each interval. These intervals (fractals) may be
chosen with approximately equal lengths in the way, which allows to postulate either the
Independence or some type of "weak" dependence between the numbers of events' occurrences on
each fractal. These random numbers are characterized by local frequency distributions on fractals. In
self-organized systems of such type for densities of continuous analogs of events' occurrence
numbers' distributions, instead of scale-invariance the semi-group property has to take place. In
contradiction to scale-invariant property, where the operation of multiplication is used, the semi-
group property is based on operation of convolution.

So, we formulate arguments, which allow to replace in many cases the scale-invariant by semi-
group property for growing biomolecular networks.

The semi-group property implies that the convolution of densities (or distribution functions) of the
same type equals to density (or distribution functions) of exactly this type. Such semi-group property
intrinsic for normal, Cauchy's, Levy's distribution functions and for many other very useful ones.

Notice that the semi-group property holds, for instance, for very important in Probability Theory
four-parametric family of Stable Laws [2, 3]. That is the reason why we are going to use some stable
laws as continuous analogs for frequency distributions arising in growing biomolecular networks.
Such probability distributions, in particular, satisfy the semi-group property.

Later we are going to substantiate that for self-organized large-scale biomolecular systems, in
particular, for growing biomolecular networks of above described type the conception of regular
variation and semi-group property for empirical frequency distributions' continuous analogs are
closely connected and supplement each other from the point of view of Probability Theory.

It is just the time to mention that Stable Laws not only satisfy the semi-group property, but also
have regularities which are characteristic for empirical frequency distributions in large-scale
biomolecular systems. Here they are: 7) Regular Variation; 2) skewness; 3) satisfaction to some
convexity properties; 3) Power Law behavior; 5) unimodality. [4]

In order to formulate the semi-group property for distribution functions mathematically we use the
concept of convolution (see, for instance [3]).

Let {Fa(x) } be a one-parametric family of distributions and fa be the density of F. So, we have

one-parametric family of densities {fa(x) ).
Definition 2. We say that for a family {f (x) } the semi-group property holds if this family is closea

under convolution, i.e.f *f =f , where"*" denotes the sign of convolution.
(11 (12 (Xl+0L2
2. Stable Laws. In this Section we introduce another, more powerfu/ than the semi-group property
and, obviously, more restrictable property, which extracts the well-known in Probability Theory

family of Stable Laws. [3]
Definition 3. We say that the distribution function S is stable if for any, a, € R, a, € R, b, € R",



b2 e R, there are numbersa e Rl, b € R such that

(X731 (X3 (x_a)

S| | #S| =S| |, xe R 2.1)
\b J Ub, J Ub )
Let us consider gamma-distribution functions
[ o
| \% v—1 —au 1
a - u du, X€R’,
Fot V(X) - %| F(V) ‘J 0
L 0, x<0.

Fa V(x) may be represented as Fa V(x) = [(y(v,ax))/(T'(v))], where I'(-) is the Euler's Gamma Function

and y(v,x) = e - t""1dt - a well known in Mathematical Analysis incomplete Gamma Function.
Easily seen that the Gamma-densities satisfy the semi-group property, but the Gamma distribution
function is not stzable [3]. Indeed, taking the density

f ¥ =—a". x"1e® v cR' xeR* 2.2)

I'(v)
with a = 1 and v is fixed let us check out (2.1) for a =a,= 0, b1 = b2 = 1. Then (2.1), due to (2.2), in

our case in terms of densities takes the form

1 ((x—a)

£, =1 G)*f (0)=-1 | |, xe R

b U b )

with some admissible constants a € R, b € R". Note that here also the semi-group property for
Gamma densities was used. But the last equality, i.e. f1 2V(X) = [l/b]f1 V([(x — a)/b]) for any a and b

cannot be true for all values x € R".
It is known (see, for instance, [3]) that the standard Normal

X

1 2
Dd(x) = —u‘2 1
O T ) ¢ P xR

Levys

F(x) = : e V2uqy x e RY
'\E J 3 > >



Cauchy's

11
F(x) ==+ —arctan x, x € R},
2
distribution functions are stable.

Historically the family of Stable Laws has been extracted from the class of Infinitely Divisible
Distributions. More precisely, the Canonical Representations for the logarithm of characteristic
function of Infinitely Divisible Distributions has been found. It allowed to obtain the logarithm of
characteristic function for all Szable Laws. Such a Canonical Representation of Stable Laws became a
powerful tool for many new results. For instance, the existence of continuous densities for Series
Expansions for them.

Unfortunately the Normal, Levy's, Cauchy's distributions are the only ones, which can be
represented in closed form. For others there are Series Expansions and Integral Representations [2,3].

Let us characterize the parameters of the family of Stable Laws.

Definition 4. We say that the distribution functions ¥, and ¥, belong to the same class if there are

constantsa € R' andb e R* such that for allx R the equality holds
(x—a)
F.(x)=F,] |.
L b J

If S(x) is a Stable Law, then S( [(x — a)/(c)]) with a € R! and 6 € R is also Stable. Therefore, we
faced with first two parameters of Stable Laws: the shifting parameter (a) and the scale factor (o).
More essential are two other parameters: the exponent and the asymmetry. In order to define them,
it is necessary to give another equivalent definition of Stable Laws [3]. Let us introduce the notation &

En to indicate that random variables & and n are identically distributed. By this notation, n d af + B
means that distribution functions of £ and n belong to the same class, and differ only by Jocation
parameters.

Let {€_}and € are independent identically distributed random variables and

Sn=§1+§2+...+§n, n>1.

Now the following definition is equivalent to Definition 3.
Definition 5. We say that S(x) = P(§ < x) is stable if for each integern > 1 there are constants o, €

R and a_ € R! such that
s 5 e4a 2.3)
n n n’ )

It is amazing that in (2.3) necessarily (see [3])

o, = nl/a; n>1, a e (0,2]. (2.4)

The number « is called the exponent of Stable Law S = Sy

The values a = 2, a = 1/2, a = 1,characterize in (2.3) Normal, Levy's and Cauchy's Laws,
respectively, inside the family of Stable Laws.



So, now, we are familiar with three parameters. These three parameters being fixed, the forth one
characterizes the skewness of a Stable Law.
Definition 6. For a Stable Law S the limit

1 —S(x) — S(—x) def
lim =

x40 1 = S(x) + S(—x%)

pel-11]

1s called asymmetry.
It is the second essential parameter of Stable Laws.

If now we take for each value of exponent o € (0,2) and asymmetry B € [-1,1] one representative

S o from the family of Stable Laws, then the family may be represented in the form | | {(Sep ([(x-

o (%)

a)/(c)]):se Rt ac Rl}.

For our further purpose we need either Stable Laws concentrated on [0, +o0), or symmetric Stable
Laws which allow to construct distribution functions concentrated on [0, +). It means that we must
take either f=1or f =0.

3. Two Families of Densities. The search of distributions being applicable to large-scale
biomolecular systems for the approximation of frequency distributions arising there are still
continued [2,4].

Here, as continuous analogues of such distributions we suggest two-parametric families of densities,
connected with Stable Laws, that possess known statistical facts 1-5 (see Section I) on empirical
frequency distributions in biomolecular systems.

Powerful tools for investigation of asymptotic properties of Stable Laws are their Integral
Representations. Let us give a brief information on this topic.

Family 1. Let

{Fm,ﬁ (=) —o % gx. 6% 041): 0<a <1, 6 R (3.1)

be a two-parametric family of standard stable densities concentrated on R" (see V. Feller [3] and V.
Zolotarev [5]). Here s(x; a, 1) is given by the series expansion

1 na+1) 1
s(x; a1, 1) =— Z (—1)n_1 . - sin(nna), (3.2)
. n! Xnoc+1
n>1
and o is it's exponent.
Family 2. Let
{fm,c (2) =95 Ve, s(x - G_l/a; a;0): 1<a<2, o € R} (3.3)

be a two-parametric family of densities concentrated on R" and generated by standard symmetric
stable densities s(x; o, 0), namely



w1 T((nie)+1) 1

ol 0,0) = D

I s (nmf 2) =
- Il! Xn-:r.+
_{Z(JMHWE;ET+U““”mmm—WHV= (3.4)
IS e AT2m -1 fe]+ 1) Lm-2
Z (2m - 1)

Here o is also is the exponent of these stable densities.
From general case, being considered in 2.7, p. 173, [2] for the families (3.1) and (3.3) we extract the
following conclusions.

Theorem. (a) The graphs of £ o, (%) are downward/upward convex, and are unimodal with only one
mode, saym, where0 <m<ow forl<a<1andm=0forl <a<2.

(b) £ 5(x) = const - [1/(x*1)], x - .
It means thar f o (¥) varies regularly at infinity and exhibits constant slowly varying component.
The exponent of regular variation, say (—p), of f o5 %) and the exponent o. of stable density which

generates f oo (%) satisty the equality p = o + 1.

Often it is more preferable to have /ntegral Representationsinstead of Expansions. From general
expansions of /ntegral Representations [3,5], in our case, we obtain the following representations in
case ¢ = 1.

Let 0 < o < 1 and S(x; a, 1) be a distribution function of s(x; o, 1) = f . (¥). Then, for x € R* the
representation

1 r 1 1
S(x; a, 1) =— ] exp(— U (y)dy, (3.5)
27 3 e (a-1)
where
( \ [(a)/(0-1)] n
| s1n( a-(y+1)) | cos(;((oc—l)-y+oc))
U (y)=} I , vy e [-1,1] (3.6)
| " | i
cos(—y) cos(~y)
\ 2 / 2

holds. Now, making the variable's replacement ¢ = [(7)/2]y in integral (3.5) and using equalities in
(3.6)

/I T T /I

cos((a — 1) +—a)=cos(—— (1 —a)(p +—)) =sin((1 — a)(p +—)),
2 2 2 2



T
cos@ = sin(p + —),
2
we come to another representation for S(x; a, 1). New variable's replacement y = ¢ + [(1)/2] leads to
the following /ntegral Representation

1 ,m 1

S(x;a, 1) =— ] exp(—
P 0 < (a-1)

- Ug (v)dy, 3.7)

where

fsin(oc\p)\| [((@)/(o=D)]  sin((1 —a) - )

Ty () =| : . v e [0 (3.8)
\ siny ) sin(y)
Now, let 1 < a < 2 and S(x;0.,0) be a distribution function of s(x; a, 0). Then, for x € R" we have
1 ( 1
S6 0, 0)=1-= | exp(x* @71V (y)dy, (3.9)
270
where
( T [(o)/(a—1)] P
| cos(=y) | cos(—~ (o= 1) -y)
B :
V., ) ol | : , y € [0,1]. (3.10)
| o "
sin( — ay) cos(—y)
\ 2 / 2

Now, making the variable's replacement y = [(7)/2]y in integral (3.9) we come to the following
Integral Representation
1 ~n/2
Sx;a,0) =1-- ) exp(—x* (a-1) 7, (W)dy, (3.11)
w0

where
[ cos(y) ) @/(@1] cos((or — 1) - )

?m (W) = |
\ sin(oy) ) cos(y)

, v e [0,1/2]. (3.12)

Next, from (3.7)-(3.8) and (3.11)-(3.12) we find the distribution function ftt,l (%) for densities

fm (%) being equal to S(x; o, 1) incase 0 <a< land to 2 - S(x; &, 0) —lincase 1 < <2 on R*, which
is concentrated on [0, +0).

Let us make one remark. Integral Representations for densities and other derivatives of Stable Laws
are easy to derive by differentiating corresponding /ntegral Representations of Stable Laws under the
sign of integral.



4. Discretization. The families (3.1) and (3.3) of densities are suggested as continuous analogues of
desired frequency distributions for application to large-scale biomolecular networks.
The desired distributions are possible to derive with the help of the discretization procedure. Let us

describe this procedure.

Let f(x) be a distribution density concentrated on R!. Then, the corresponding discretization

(frequency distribution), say { pn} taking values only in points ..., =2, -1, 0, 1, 2, ... has the following
form
n
|( Jr f(x)dx, n=1,2, ...,
| n—1
P, =1 0, n =0, (4.1)
I r n+l
f(x)dx, n=-1,-2, ....
L)
or
n+l

f(x)dx, n=0, (4.2)

In particular if f(x) is symmetric, thenp_=p__,i.e.{p_}isalso symmetric. The result of

discretization (4.1) corresponding to the families (3.1) and (3.3) of densities extract the desired
frequency distributions families.
We call {pn} a discretization of {(x).

We are interested in constructing of frequency distributions from densities that either are
concentrated on [0, +0), or are symmetric. In the last case we transform the "mass" of density in (—oo,
0] into [0, +o) and add it to the "mass" concentrated in [0, +o).

According to series expansion (3.2) and (3.4) we obtain

1 I'(mo + 1) ? dx
Py )= 3" (! ———sin(wna) - | _

P m! Xmoc+1
m=>1 n-1




1 I'(mao + 1)
== Z D)@ "= (0 -1)""")sin(nna),

T mo - m!
m>1

n=0,1,2,..., 0<a<1,
for the family (3.1), and

2m -1

I'( +1)

(0

OL 0) = ( l)m_ ( 2m-1 _ ( _ 1)2m_1)’ = ]_, 2, ey
Z 2m-1)-2m-1)! " ! ;

m>l

pO(OL,O)ZO, l<a<2

for the family (3.3). Here the first form of discretization in (4.1) was used.

Now, it is necessary to check out the validity of known statistical fact for empirical frequency
distributions.

It is obvious that after discretization procedure the properties of unimodality and convexity for {{pn

(a,1)}: 0 << 1} and {{pn(oc,O)} : 1 < o < 2} are conserved. It is easy to understand by considering the

graphical approach (see, in general, figure 1).

B

Figure 1.

In particular, the considered densities being decreasing at infinity imply the same property for
discretization.

The fact of regular variation of discretization may be proved even in general case.

Given a density f(x) concentrated on [0, +o0] decreasing at infinity and varies regularly at infinity
with exponent a.

Definition 7. Measurable function R(t) > 0 defined on (0, +o) varies regularly at infinity with
exponent p € (—o, +©) if for anyx > 0 the limit exists



R(xt)

lim
t—+0  R(t)

_ P (4.3)

If R(t) varies regularly at infinity with exponent p = 0, then we call it slow varyingat infinity and
denote by L(t).
Any regularly varying at infinity function R(t) with exponent p is presented in the form
R(t) = t” L(t), 0 <t < +o0. (4.4)

Any function of type (4.4) with p € (-, +0) and with slowly varying L(t), varies regularly at
infinity with exponent p.
For a sequence of positive numbers {c_} the definition of regularly varying function with exponent

p stays unchanged if in (4.3) we replace x and t by integers s > 1 and n > 1 respectively, i.e.
c
sn

lim — =P (see, for instance, [6]).
n—>+o €

Assume that {pn} is a discretization of f(x) of the form (4.1), i.e.
n
_ [
P~ J f(x)dx, n=0,1,2,....
n-1
Then {p_} varies regularly at infinity with exponent o. Indeed, for integer m > 1 we have to prove

the existence of limit

( nm
] f(x)dx
Pom nm-1

lim ——= lim =m%*.

n—>+o P, no+o rn
f(x)dx
J
n-1

We have the following inequalities for "large" integer n > 1 and integer m > 1

f(nm) Pmm f(om-1)
< < . (4.5)
fn—-1) P, f(n)

Since

f(k + 1)

lim =1,

ks (k)

therefore, from (4.5) we conclude



Poim f(nm)

lim —= lim o

=m .

Nn—>+00 Pn no+oo  (n)
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Q. Uunnju, E. U. tutthbub, U. 2. Unwpbjjut

Zudwjuujuinughtt pugjuntdtpn wénn YEuuwdngEynjughtt hadwlwpgtponud
hhdijws Juynit jpinmeynititkph Ypu

UbswdwJuy wénn Yhtuwwdnjtynyjyup hudwljupgbpmd swpniiapdmud. Bu- pupfunidutiph
npnundubpp”’ npuitlgnid wnwgwgnn kdujhphl puwofunidubpp dninwplnt hwdwp: Glukng fetuw-
unjtynyuyhtt hwdwljupgtph dwuht dkswpwitial) njjuyitphg’ npny punhwimip Jhdwljugpujui
thwuwntp ki hwunuundt) bl hphly hwdwhuljuiaghtt pupunidubph Epuapbpyu:

Uju wphuwrnuiipnid, npujtiu hwdwhiujuitughs pupjunidubtph wtipinhwn tdwbulubp, wnw-
owpynid kup hounmpnitittph Epjuyyupudbnpuith pinwtthpubp® juudus juynit pupjundubph
htwn: 8nyg Eup wnuyhu, np wyn punwthputpp pudupupnd Bu JEtuwdn Eyngughtt hwdwljuap-
gbpnud wnwgwgnn hwdwpwljuttughtt pupfunidutph hudwp vinugjws ponp Jhdwjugpuju
thwuwnbpht

Uy pinwithpubph papjudwts dmujghwtibiph hwdwp vinwtnd Bup htinbgpuyy tbpljuugnid-
utip, npnup wy b h tyyunuljuhwpdwp Bu wyny pinwtthpubph hwnlmpniitbpt ntumduwuhplyme b
Eluthphly puppunudubpp dninwplne hudwp: ZhdnfEm] wyu juymb pnmeinciibph dpua nhu-
yptinhqugdwi hgngny junnignid Eup hwdwhmuljutiught pugjunidubp, npnup tinybybu pudu-
nunnid Eu hwyinth yh&wljugpuijuts thwuwnbphe

bx. Acroma, 3. A. larwers, A. T'. Apakerss

YacToTHbIe pacTipeie/IeHHs B paCTyIIMX GHOMOJIEKY IIPHBIX CCTEMAX,
OCHOBAHHBIE HA YCTOMYMBBIX IUTOTHOCTSAX

B pactyuux OnoMoneKyIIpHBIX CUCTEMAX OOJBIINX Pa3MEPHOCTEN MPOIOJIKAIOTCS TOUCKH pac-
MIPENEICHUM, KOTOPBIE MOTYT CIIYXKHUTh allpPOKCHMAlUsAMU [UIsl BO3HUKAIOIINAX B HUX SMIUPHUYECKHX
pacrpenenenuil. Mcxons u3 orpomMHbIX 0a3 JaHHBIX U TaKUX CHCTEM YCTaHOBJIEHBI HEKOTOpbIE
o01mmue cratTucTuyeckre (HakThl SMIUPUIECKUX YACTOTHBIX PaCHpeIeICHHA.

B nanHo#i paboTe B KadecTBE HEMPEPHIBHBIX aHAJIOTOB YaCTOTHBIX PACHpPEIeNICHIH TPEII0KEHBI
JIByXITapaMEeTPUUYECKHE CEMENCTBA TUIOTHOCTEH, CBSI3aHHBIE ¢ YCTOMYMBBIMU 3aKkoHamu. [lokazano, 4To
9TH CEMEWCTBA yIOBIETBOPSIOT U3BECTHBIM CTATUCTHUYECKUM CBOMCTBAM SMIMPUYECKUX pacIpenelie-
HU, BO3HUKAIOMIKUX B OMOMOJIEKYJISIPHBIX CUCTEMAX.

Jna pyHkuuii pacrpeneneHuil 3TuX ceMeNCTB MOJyUYeHbl HHTErpabHbIE MPEACTABICHUS, YI00-
HbIE NP HM3Y4YEHUM HMX CBOWCTB W I alpOKCUMAalUMU SMIIMPUYECKHUX pactpeneneuil. Ha ocHose
YCTOMYMBBIX IJIOTHOCTEH C MOMOIIBIO IUCKPETU3ALUU CTPOATCSA YaCTOTHBIE PACIPEIEIICHUs, KOTOPbIE

TAKXC YIOBJIICTBOPAIOT U3BCCTHBIM CTATUCTUICCKUM CBOMCTBAM.



