УДК 539.1

Член-корреспондент НАН РА А. Г. Багдоев, А. В. Варданян, С. В. Варданян

Определение линейных частот изгибных колебаний магнитоупругой цилиндрической оболочки

(Представлено 30/VIII 2005)

Ключевые слова: изгибные колебания, цилиндрическая оболочка, магнитоупругость

Рассматриваются линейные изгибные колебания магнитоупругой цилиндрической оболочки в осевом магнитном поле. Решение получено пространственным методом путем аналитических и численных исследований.

В [1-5] при рассмотрении изгибных колебаний магнитоупругих пластин и оболочек был применен осредненный подход. С помощью нового пространственного подхода [6] магнитоупругие колебания пластин рассмотрены в [7-9]. В настоящей работе использован пространственный анализ для аналитического и численного определения частоты свободных изгибных колебаний магнитоупругой цилиндрической оболочки.

Пусть бесконечная цилиндрическая оболочка находится в осевом начальном магнитном поле H₀.

Уравнения движения магнитоупругой среды в случае осевой симметрии, $\overline{H} = \overline{H}_0 + \overline{h}$ -магнитное поле, имеют вид [10,11]:

$$a_{1}^{2} = \frac{H_{0}^{2}}{4\pi\rho}, \quad \zeta = 1 - \frac{b^{2}}{a^{2}},$$

$$\frac{\partial^{2}u_{r}}{\partial r^{2}} + \frac{b^{2}}{a^{2}} \frac{\partial^{2}u_{r}}{\partial z^{2}} + \zeta \frac{\partial^{2}u_{z}}{\partial r\partial z} + \frac{1}{r} \frac{\partial u_{r}}{\partial r} - \frac{1}{r^{2}} u_{r} = \frac{1}{a^{2}} \frac{\partial^{2}u_{r}}{\partial t^{2}} - \frac{a_{1}^{2}}{a^{2}} \left(\frac{\partial h_{r}}{\partial z} - \frac{\partial h_{z}}{\partial r} \right), \quad (1)$$

$$\frac{b^2}{a^2} \frac{\partial^2 u_z}{\partial r^2} + \frac{\partial^2 u_z}{\partial z^2} + \zeta \frac{\partial^2 u_r}{\partial r \partial z} + \frac{b^2}{a^2} \frac{1}{r} \frac{\partial u_z}{\partial r} + \frac{\zeta}{r} \frac{\partial u_r}{\partial z} = \frac{1}{a^2} \frac{\partial^2 u_z}{\partial t^2},$$

где для силы Лоренца учтено, что

$$-\frac{1}{4\pi\rho} \left(rot\bar{h} \times \overline{H}_0 \right)_r = -\frac{H_0}{4\pi\rho} \left(\frac{\partial h_r}{\partial z} - \frac{\partial h_z}{\partial r} \right), \tag{2}$$

$$-\frac{1}{4\pi\rho} \left(\operatorname{rot} \overline{h} \times \overline{H}_0 \right)_z = 0.$$
(3)

Уравнение электромагнитной индукции

$$\frac{\partial \overline{\mathbf{h}}}{\partial t} = \operatorname{rot}\left(\overline{\mathbf{v}} \times \overline{\mathbf{H}}_{0}\right) + \upsilon_{\mathrm{m}} \Delta \overline{\mathbf{h}}, \qquad (4)$$

где $\overline{\nu}$ - вектор скорости, $\overline{\nu} = \partial \overline{u} / \partial t$, \overline{u} - перемещения, с учетом соотношений $\Delta \overline{h} = \left(\Delta h_r - [(h_r) / (r^2)] \right) \overline{e}_r + \Delta h_z \overline{e}_z$, где \overline{e}_r , \overline{e}_z - единичные орты по осям r, z, $\Delta \phi = [1/r][(\partial) / (\partial r)](r$ $[(\partial \phi) / (\partial r)]) + [(\partial^2 \phi) / (\partial z^2)]$, дает в проекции на оси r, z

$$\frac{\partial \mathbf{h}_{\mathrm{r}}}{\partial t} = \mathbf{H}_{0} \frac{\partial^{2} \mathbf{u}_{\mathrm{r}}}{\partial t \partial z} + \mathbf{v}_{\mathrm{m}} \left(\frac{\partial^{2} \mathbf{h}_{\mathrm{r}}}{\partial r^{2} + \frac{1}{r}} \frac{\partial \mathbf{h}_{\mathrm{r}}}{\partial r} + \frac{\partial^{2} \mathbf{h}_{\mathrm{r}}}{\partial z^{2} - \frac{1}{r^{2}}} \right),$$

$$\mathbf{h}_{\mathrm{r}} = \left(\frac{\partial^{2} \mathbf{u}}{\partial t^{2} + \frac{1}{r}} \frac{\partial \mathbf{u}_{\mathrm{r}}}{\partial t^{2} + \frac{1}{r}} \frac{\partial \mathbf{h}_{\mathrm{r}}}{\partial t^{2} + \frac{1}{r^{2}}} \frac{\partial \mathbf{h}_{\mathrm{r}}}{\partial t^{2} + \frac{1}{r^{2}}} \frac{\partial \mathbf{h}_{\mathrm{r}}}{\partial t^{2} + \frac{1}{r^{2}}} \right),$$

$$(5)$$

$$\frac{\partial h_z}{\partial t} = -H_0 \left(\frac{\partial^2 u_r}{\partial t \partial r} + \frac{1}{r} \frac{\partial u_r}{\partial t} \right) + \nu_m \left(\frac{\partial^2 h_z}{\partial r^2} + \frac{1}{r} \frac{\partial h_z}{\partial r} + \frac{\partial^2 h_z}{\partial z^2} \right).$$

Ищем решение (3),(5) в виде распространяющейся в направлении оси z плоской волны

$$\xi_{j} = rv_{j}, \quad j = 1,2,3,$$

$$\begin{split} u_{r} &= A_{j}I_{1}(\xi)e^{-i\omega t + ikz} + A'_{j}K_{1}(\xi)e^{-i\omega t + ikz} + \kappa.c., \\ u_{z} &= B_{j}I_{0}(\xi)e^{-i\omega t + ikz} + B'_{j}K_{0}(\xi)e^{-i\omega t + ikz} + \kappa.c., \end{split}$$
(6)
$$h_{z} &= C_{j}H_{0}I_{0}(\xi)e^{-i\omega t + ikz} + C'_{j}H_{0}K_{0}(\xi)e^{-i\omega t + ikz} + \kappa.c., \\ h_{r} &= D_{j}H_{0}I_{1}(\xi)e^{-i\omega t + ikz} + D'_{j}H_{0}K_{1}(\xi)e^{-i\omega t + ikz} + \kappa.c., \end{split}$$

где I_{0,1}(ξ), K_{0,1}(ξ) - функции Бесселя мнимого аргумента, причем по ј суммируется от 1 до 3. Учитывая соотношения

$$I'_{0}(\xi) = I_{1}(\xi), \quad K'_{0}(\xi) = -K_{1}(\xi),$$

$$\frac{dI_{1}(\xi)}{d\xi} + \frac{1}{\xi} I_{1}(\xi) = I_{0}(\xi), \quad \frac{dK_{1}(\xi)}{d\xi} + \frac{1}{\xi} K_{1}(\xi) = -K_{0}(\xi), \quad (7)$$

можно из (3), (5), (6) получить:

Β′_j

$$\begin{split} A_{j} \left(v_{j}^{2} - \frac{b^{2}}{a^{2}} k^{2} + \frac{\omega^{2}}{a^{2}} \right) + \zeta i k v_{j} B_{j} &= \frac{a_{1}^{2}}{a^{2}} (v_{j} C_{j} - i k D_{j}), \\ & \left(\frac{b^{2}}{a^{2}} v_{j}^{2} - k^{2} + \frac{\omega^{2}}{a^{2}} \right) B_{j} + \zeta i k v_{j} A_{j} = 0, \\ C_{j} &= \frac{i \omega v_{j}}{\chi_{j}} A_{j}, \quad D_{j} = \frac{\omega k A_{j}}{\chi_{j}}, \quad \chi_{j} = -i \omega + v_{m} k^{2} - v_{m} v_{j}^{2}, \\ A'_{j} \left(v_{j}^{2} - \frac{b^{2}}{a^{2}} k^{2} + \frac{\omega^{2}}{a^{2}} \right) - \zeta i k v_{j} B'_{j} = \frac{a_{1}^{2}}{a^{2}} (-v_{j} C'_{j} - i k D'_{j}), \\ \left(\frac{b^{2}}{a^{2}} v_{j}^{2} - k^{2} + \frac{\omega^{2}}{a^{2}} \right) - \zeta i k v_{j} B'_{j} = 0, \quad C'_{j} = -\frac{i \omega v_{j}}{\chi_{j}} A'_{j}, \quad D'_{j} = \frac{\omega k A'_{j}}{\chi_{j}}, \end{split}$$

где по ј не суммируется. Таким образом, связи A'_{j} , $-C'_{j}$, D'_{j} с $-B'_{j}$ не отличаются знаком от A_{j} , C_{j} , D_{j} с B_{j} и окончательное уравнение для $\overline{v} = v_{j}$ будет одним и тем же:

$$\overline{\upsilon}^{2} - \frac{b^{2}}{a^{2}}k^{2} + \frac{\omega^{2}}{a^{2}} + \frac{\zeta^{2}\overline{\upsilon}^{2}k^{2}}{\frac{b^{2}}{a^{2}}\overline{\upsilon}^{2} - k^{2} + \frac{\omega^{2}}{a^{2}}} = -\frac{a_{1}^{2}}{a^{2}}\frac{\overline{\upsilon}^{2} - k^{2}}{1 + i\frac{k^{2} - \overline{\upsilon}^{2}}{\omega}\upsilon_{m}}.$$
(9)

Полученное уравнение такое же, как и для пластин [7], причем для малых $[(a_1^{\ 2})/(a^2)]$ и не больших $v_{\rm m}$

$$1 - \frac{k^2 - v_3^2}{\varepsilon^{g}} = -\frac{a_1^2}{a^2} \frac{\zeta \frac{a^2}{b^2} k^2 + \varepsilon^{g}}{\varepsilon^{g}},$$
(10)

$$v_1^2 = k^2 - \frac{\omega^2}{a^2} - \frac{a_1^2}{a^2} \left(k^2 - \frac{\omega^2}{a^2} \right) \left(1 + \frac{\omega^2}{a^2 \vartheta} \right),$$
(11)

$$v_2^2 = k^2 - \frac{\omega^2}{a^2} + \frac{a_1^2}{b^2} k^2 + \frac{\omega^2 a_1^2 k^2}{b^4 \vartheta}, \quad \vartheta = i \frac{\omega}{v_m}.$$
 (12)

Таким образом, связи A_j , C_j , D_j через B_j такие же, как для пластины, и такие же, как для A'_j , – C'_j , D'_j через – B'_j . Для завершения решения задачи следует записать граничные условия для r = R - h, r = R + h

$$\sigma_{\rm rr} = 0, \ \sigma_{\rm rz} = 0, \ h_{\rm r} = \widetilde{h}_{\rm r}, \ h_{\rm z} = \widetilde{h}_{\rm z}, \tag{13}$$

где \tilde{h}_r, \tilde{h}_z есть возмущенное магнитное поле вне оболочки. Первые два условия (13) дают на указанных границах

$$a^{2}\frac{\partial u_{r}}{\partial r} + \left(a^{2} - 2b^{2}\right) \left(\begin{array}{c}u_{r}}{} \frac{\partial u_{z}}{} \\ r \end{array}\right) = 0, \quad \frac{\partial u_{r}}{} \frac{\partial u_{z}}{} = 0.$$

Подставляя сюда (6) и полагая $\zeta' = \zeta - [(b^2)/(a^2)]$, получим

$$A_{j}v_{j}I'_{1}(\xi_{j}^{\pm}) + \zeta'A_{j}v_{j}\frac{1}{\xi_{j}^{\pm}}I_{1}(\xi_{j}^{\pm}) + A'_{j}v_{j}K'_{1}(\xi_{j}^{\pm}) +$$

$$+ \zeta' A'_{j} v_{j} \frac{1}{\xi_{j}^{\pm}} K_{1}(\xi_{j}^{\pm}) + \zeta' B_{j} i k I_{0}(\xi_{j}^{\pm}) + \zeta' B'_{j} i k K_{0}(\xi_{j}^{\pm}) = 0,$$
(14)

$$ikA_{j}I_{1}(\xi_{j}^{\pm}) + ikA'_{j}K_{1}(\xi_{j}^{\pm}) + B_{j}I_{1}(\xi_{j}^{\pm})\nu_{j} - B'_{j}K_{1}(\xi_{j}^{\pm})\nu_{j} = 0$$

где по ј суммируется от 1 до 3, $\xi_j^{\,\pm}$ = $(R\pm h)\nu_j.$ Осталось выполнить условия

$$r = \mathbb{R} \pm h, \ h_r = \widetilde{h}_r, \ h_z = \widetilde{h}_z.$$
 (15)

При r > R + h, v = k

$$\widetilde{\mathbf{h}}_{z} = \widetilde{\mathbf{C}}\mathbf{H}_{0}\mathbf{K}_{0}(\mathbf{r}\upsilon)\mathbf{e}^{-i\omega t + i\mathbf{k}z} + \mathbf{k.c.},$$

$$\widetilde{\mathbf{h}}_{r} = \widetilde{\mathbf{D}}\mathbf{H}_{0}\mathbf{K}_{1}(\mathbf{r}\upsilon)\mathbf{e}^{-i\omega t + i\mathbf{k}z} + \mathbf{k.c.}$$
(16)

При r < R - h

$$\widetilde{\mathbf{h}}_{z} = \widetilde{\widetilde{\mathbf{C}}} \mathbf{H}_{0} \mathbf{I}_{0} (\mathbf{r} \upsilon) e^{-i\omega t + i\mathbf{k}z} + \mathbf{k.c.}, \qquad (17)$$

$$\widetilde{\mathbf{h}}_{r} = \widetilde{\widetilde{\mathbf{D}}} \mathbf{H}_{0} \mathbf{I}_{1} (\mathbf{r} \upsilon) e^{-i\omega t + i\mathbf{k}z} + \mathbf{k.c.}$$

Используя уравнение

$$\frac{\partial \widetilde{\mathbf{h}}_{\mathbf{r}}}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}} \widetilde{\mathbf{h}}_{\mathbf{r}} + \frac{\partial \widetilde{\mathbf{h}}_{\mathbf{z}}}{\partial z} = 0$$

и подставляя в него (16), (17), получим

$$-\upsilon \widetilde{D} + ik\widetilde{C} = 0, \quad \upsilon \widetilde{\widetilde{D}} + ik\widetilde{\widetilde{C}} = 0.$$
(18)

Условия (15) дают с учетом (6)

$$\begin{split} & D_{j}I_{1}\left(\xi_{j}^{+}\right) + D_{j}^{\prime}K_{1}\left(\xi_{j}^{+}\right) = i\widetilde{C}_{j}K_{1}\left(\left(\mathbb{R} + h\right)k\right), \\ & C_{j}I_{0}\left(\xi_{j}^{+}\right) + C_{j}^{\prime}K_{0}\left(\xi_{j}^{+}\right) = \widetilde{C}_{j}K_{0}\left(\left(\mathbb{R} + h\right)k\right), \\ & D_{j}I_{1}\left(\xi_{j}^{-}\right) + D_{j}^{\prime}K_{1}\left(\xi_{j}^{-}\right) = -i\widetilde{\widetilde{C}}_{j}I_{1}\left(\left(\mathbb{R} - h\right)k\right), \\ & C_{j}I_{0}\left(\xi_{j}^{-}\right) + C_{j}^{\prime}K_{0}\left(\xi_{j}^{-}\right) = \widetilde{\widetilde{C}}_{j}I_{0}\left(\left(\mathbb{R} - h\right)k\right). \end{split}$$

Итак, имеют место четыре уравнения (14), к которым добавятся два уравнения, получаемые из последних соотношений исключением \widetilde{C}_j , $\widetilde{\widetilde{C}}_j$:

$$\frac{\omega kA_{j}}{\chi_{j}}I_{1}(\xi_{j}^{+}) + \frac{\omega kA'_{j}}{\chi_{j}}K_{1}(\xi_{j}^{+}) = i\frac{K_{1}\{(R+h)k\}}{K_{0}\{(R+h)k\}}\left\{\frac{i\omega\nu_{j}}{\chi_{j}}A_{j}I_{0}(\xi_{j}^{+}) - \frac{i\omega\nu_{j}}{\chi_{j}}A'_{j}K_{0}(\xi_{j}^{+})\right\},$$
(19)

$$\frac{\omega kA_j}{\chi_j}I_1(\xi_j^-) + \frac{\omega kA'_j}{\chi_j}K_1(\xi_j^-) = -i\frac{I_1\{(R-h)k\}}{I_0\{(R-h)k\}} \left\{ \begin{array}{c} i\omega\nu_j \\ \frac{\omega\nu_j}{\chi_j}A_jI_0(\xi_j^-) - \frac{i\omega\nu_j}{\chi_j}A'_jK_0(\xi_j^-) \end{array} \right\}.$$

Здесь по ј суммируется от 1 до 3. К (14) и (19) следует добавить

$$A_{j} = -\frac{1}{\zeta i k v_{j}} \left(\frac{b^{2}}{a^{2}} v_{j}^{2} - k^{2} + \frac{\omega^{2}}{a^{2}} \right) B_{j}, \qquad (20)$$
$$A'_{j} = \frac{1}{\zeta i k v_{j}} \left(\frac{b^{2}}{a^{2}} v_{j}^{2} - k^{2} + \frac{\omega^{2}}{a^{2}} \right) B'_{j},$$

где по ј не нужно суммировать. Система (14), (19) представляет однородные уравнения относительно A_{1,2,3}, A'_{1,2,3} и детерминантное уравнение имеет вид

где приняты следующие обозначения:

$$\begin{split} \prod_{j}^{\pm} &= v_{j}I'_{1}(\xi_{j}^{\pm}) + \zeta v_{j} \frac{I_{1}(\xi_{j}^{\pm})}{\xi_{j}^{\pm}} + \zeta \frac{B_{j}}{A_{j}} ik I_{0}(\xi_{j}^{\pm}), \\ M_{j}^{\pm} &= v_{j}K'_{1}(\xi_{j}^{\pm}) + \zeta v_{j} \frac{K_{1}(\xi_{j}^{\pm})}{\xi_{j}^{\pm}} + \zeta \frac{B'_{j}}{A'_{j}} ikK_{0}(\xi_{j}^{\pm}), \\ P_{j}^{\pm} &= ik I_{1}(\xi_{j}^{\pm}) + \frac{B_{j}}{A_{j}} v_{j}I_{1}(\xi_{j}^{\pm}), \quad \Omega_{j}^{\pm} &= ikK_{1}(\xi_{j}^{\pm}) - \frac{B'_{j}}{A'_{j}} v_{j}K_{1}(\xi_{j}^{\pm}) \\ N_{j}^{+} &= \frac{\omega k}{\chi_{j}} I_{1}(\xi_{j}^{+}) + \frac{\omega v_{j}}{\chi_{j}} \frac{K_{1}\{(R+h)k\}}{K_{0}\{(R+h)k\}} I_{0}(\xi_{j}^{+}), \\ N_{j}^{-} &= \frac{\omega k}{\chi_{j}} I_{1}(\xi_{j}^{-}) - \frac{\omega v_{j}}{\chi_{j}} \frac{I_{1}\{(R-h)k\}}{I_{0}\{(R-h)k\}} I_{0}(\xi_{j}^{-}), \\ \Lambda_{j}^{+} &= \frac{\omega k}{\chi_{j}} K_{1}(\xi_{j}^{+}) - \frac{\omega v_{j}}{\chi_{j}} \frac{K_{1}\{(R+h)k\}}{K_{0}\{(R+h)k\}} K_{0}(\xi_{j}^{+}), \\ \Lambda_{j}^{-} &= \frac{\omega k}{\chi_{j}} K_{1}(\xi_{j}^{-}) + \frac{\omega v_{j}}{\chi_{j}} \frac{I_{1}\{(R-h)k\}}{I_{0}\{(R-h)k\}} K_{0}(\xi_{j}^{-}). \end{split}$$

При численном расчете уравнения (21) для определения корней $\omega = \omega(k)$ дисперсионного уравнения можно в нем все χ_j разделить на $-i\omega$, и поскольку для χ_3 имеет место (10), можно третий и шестой столбцы в (21) умножить на a_1^2 , и кроме того, в членах $a_1^2 N_3^{\pm}$, $a_1^2 \Lambda_3^{\pm}$ считать, что $[(a_1^2)/(\chi_3)] = -a^2[1/(\zeta[(a^2k^2)/(b^2\vartheta)] + 1)]$. Эти преобразования необходимы, чтобы

проводить вычисления в (21) также для упругого случая $a_1 = 0$, для которого $\omega = \omega_{00}$. Были проведены расчеты Re $\omega(k)$ корней трансцендентного уравнения (21) вместе с расчетом корней $v_{1,2,3}(\omega,k)$ уравнения (9), причем в качестве первого приближения взято (10)-(12), и дисперсионное уравнение для упругого случая $a_1 = 0$ [10]

$$\omega_{00} = h'b \sqrt{\frac{\zeta}{3}} \sqrt{k^4 + 12 \frac{1 - v_0^2}{R^2 h'^2}}, \quad h' = 2h,$$
(22)

Таблица 1

a ₁ /a k	0.1	0.2	0.3	0.4	0.5
5/10 ⁵	95.25	142.071	262.124	420.1452	620.0876
1/10 ⁴	94.9777	142.287	261.085	440.6969	640.2532
2/10 ⁴	95.335	141.868	260.906	444.768	680.989
1/1000	95.3561	141.834	261.411	455.1	686.297
2/1000	94.0374	140.728	261.772	455.556	687.275
3/1000	37.4045	90.4933	118.291	445.074	687.825
4/1000	56.4103	118.236	176.434	224.562	687.133
5/1000	71.5075	141.546	243.717	287.003	354.739
6/1000	85.3117	168.453	259.745	347.349	425.96
7/1000	99.7618	146.206	291.762	399.149	498.628
8/1000	113.443	227.273	341.19	450.481	568.145
9/1000	127.268	252.926	378.975	509.944	639.966
1/100	141.459	276.627	425.007	563.777	686.181
2/100	282.78	565.711	848.694	1131.47	1414.49
3/100	424.182	848.397	1272.57	1696.54	2120.74
4/100	565.45	1130.9	1696.36	2261.87	2827.22
5/100	706.671	1413.34	2119.97	2826.6	3533.28

 $h' = 0.1, \quad R = 10^3$

Таблица 2

 $h' = 0.1, R = 10^8$ a₁/a k 0.1 0.2 0.3 0.4 0.5

5/10 ⁵	27.2162	108.861	244.912	435.349	680.126
1/10 ⁴	27.2167	108.863	244.912	435.350	680.131
2/10 ⁴	27.2181	108.865	244.92	435.358	680.139
1/1000	26.8179	108.876	245.064	435.587	680.444
2/1000	18.4247	107.53	244.906	435.966	681.169
2.2/1000	12.0007	106.756	244.691	435.981	681.323
2.4/1000	0.019999	105.698	244.374	435.952	681.456
2.6/1000	36.7695	104.288	243.927	435.861	681.567
2.8/1000	39.5979	102.436	243.320	435.700	681.640
3/1000	42.4263	100.05	242.527	435.449	681.675
3.3/1000	46.6689	95.1694	240.901	434.870	681.630
3.6/1000	50.9115	88.1594	238.636	433.981	681.418
3.8/100	53.7399	81.8141	236.693	433.184	681.170
4/1000	56.5683	113.137	234.337	432.191	680.819
5/1000	70.7102	141.42	213.726	423.299	676.911
5.1/1000	72.1244	144.249	216.373	421.946	676.272
5.3/1000	74.9528	149.906	224.858	418.912	674.804
5.5/1000	77.7812	155.562	233.343	415.402	673.093
5.8/1000	82.0237	164.047	246.071	409.127	669.985
6/1000	84.8521	169.704	254.556	339.408	424.260
7/1000	98.9937	197.987	296.981	395.975	494.969
7.1/1000	100.408	200.816	301.224	401.632	502.039
7.2/1000	101.822	203.644	305.466	407.288	509.11
7.5/1000	106.065	212.129	318.194	424.258	530.323
8/1000	113.135	226.271	339.406	452.541	565.676
9/1000	127.277	254.553	381.83	509.107	636.383
1/100	141.418	282.836	424.253	565.671	707.089
1.5/100	212.120	424.240	636.360	848.480	1060.60
2/100	282.814	565.629	848.443	1131.26	1414.07
3/100	424.169	848.337	1272.51	1696.67	2120.84
4/100	565.459	1130.92	1696.38	2261.835	2827.293
5/100	706.665	1413.33	2119.999	2826.657	3533.328

Таблица З

II - 0.1, K - 10							
a ₁ /a k	0.1	0.2	0.3	0.4	0.5		
5/10 ⁵	92.9628	140.546	260.579	444.445	686.196		
1/10 ⁴	92.9645	140.547	260.581	444.447	686.199		
2/10 ⁴	92.9713	140.553	260.587	444.455	686.209		
1/1000	93.0612	140.633	260.748	444.694	686.519		
2/1000	91.6883	139.811	260.682	445.111	687.28		
2.2/1000	90.8207	139.28	260.507	445.138	687.436		
2.4/1000	89.604	138.541	260.235	445.121	687.578		
2.6/1000	87.9425	137.545	259.842	445.049	687.698		
2.8/1000	85.715	136.235	259.304	444.906	687.787		
3/1000	82.7625	134.544	258.591	444.678	687.835		
3.3/1000	76.4733	131.118	257.124	444.137	687.807		
3.6/1000	66.7971	126.31	255.066	443.3	687.626		
3.8/100	57.1981	122.108	253.294	442.543	687.398		
4/1000	42.7145	116.885	251.144	441.597	687.068		
5/1000	0	57.2232	232.336	433.044	683.306		
5.1/1000	0	41.7662	229.443	431.736	682.68		
5.3/1000	0	0	222.897	428.805	681.257		
5.5/1000	0	0	215.18	425.415	679.585		
5.8/1000	0	0	200.87	419.343	676.551		
6/1000	0	0	188.999	414.546	674.135		
7/1000	0	0	49.9928	378.297	656.017		
7.1/1000	0	0	0	373.193	653.526		
7.2/1000	169.04	0	0	367.739	650.887		
7.5/1000	343.729	0	0	348.982	642.003		
8/1000	524.482	0	0	307.252	623.454		
9/1000	786.114	0	0	125.186	566.883		
1/100	1000.01	0	0	0	465.801		
1.5/100	1872.11	2236.56	2115.96	1357.24	0		
2/100	2646.98	3465.53	3875.19	4000.08	3857.77		

h' = 0.1 $R = 10^3$

3/100	4124.04	5658.21	6711.58	7490.67	8075.34
4/100	5568.49	7747.08	9330.34	10590.	11632.9
5/100	7000.59	9798.89	11876.9	13570.8	15012.6

Таблица 4

a ₁ /a k	0.1	0.2	0.3	0.4	0.5
5/10 ⁵	27.2167	108.867	244.949	435.466	680.415
1/10 ⁴	27.2172	108.868	244.951	435.468	680.417
2/10 ⁴	27.2185	108.871	244.957	435.476	680.427
1/1000	26.8186	108.888	245.102	435.708	680.735
2/1000	18.4253	107.541	244.95	436.1	681.485
2.2/1000	12.0003	106.768	244.74	436.117	681.637
2.4/1000	0	105.71	244.425	436.09	681.775
2.6/1000	0	104.298	243.979	436.004	681.89
2.8/1000	0	102.45	243.374	435.846	681.973
3/1000	0	100.064	242.581	435.599	682.014
3.3/1000	0	95.1842	240.96	435.024	681.975
3.6/1000	0	88.1736	238.7	434.144	681.78
3.8/100	0	81.8268	236.759	433.352	681.54
4/1000	0	73.5506	234.407	432.367	681.198
5/1000	0	0	213.803	423.509	677.346
5.1/1000	0	0	210.616	422.157	676.708
5.3/1000	0	0	203.38	419.13	675.258
5.5/1000	0	0	194.796	415.63	673.556
5.8/1000	0	0	178.695	409.363	670.472
6/1000	0	0	165.109	404.411	668.017
7/1000	0	0	0	366.929	649.631
7.1/1000	86.4275	0	0	361.637	647.104
7.2/1000	190.028	0	0	355.978	644.427
7.5/1000	352.736	0	0	336.472	635.416
8/1000	528.756	0	0	292.762	616.599

 $h' = 0.1, \quad R = 10^8$

9/1000	787.29	0	0	81.7689	559.155
1/100	1000.0	0	0	0	456.082
1.5/100	1870.94	2236.36	2116.59	1359.63	0
2/100	2645.86	3464.96	3874.93	4000.07	3858.02
3/100	4123.19	5657.67	6711.19	7490.37	8075.12
4/100	5567.83	7746.64	9329.99	10589.7	11632.7
5/100	7000.05	9798.52	11876.6	13570.5	15012.4

здесь v_0 - коэффициент Пуассона, $v_0 = [1/3]$. Результаты расчетов действительной частоты Re ω при значениях параметров для алюминия $[(b^2)/(a^2)] = [1/3]$, $\zeta = [2/3]$, $a = 10^5$ см/с, $\rho = 3$ г/см³, $v_m = 1000$ см²/с., h' = 0.1 см, R = 10^3 , 10^8 см, k = 0.1, 0.2, 0.3, 0.4, 0.5 см⁻¹ приведены в табл. 1,2.

Проведено сравнение случая $R = 10^8$ см (табл.2) с результатами решения соответствующего детерминантного уравнения для $Re \omega(k)$ для пластин [12]. Результаты почти в точности совпадают, что подтверждает правильность выводов и решений, приведенных в данной статье, для оболочки. Мы сравнили также данные табл.1,2 с соответствующими результатами осредненной теории, для которой дисперсионное уравнение получено в [10], которое после некоторых преобразований может быть записано в виде [9]

$$\overline{\omega}^{2} = \omega_{00}^{2} + \frac{a_{1}^{2}\overline{\omega}k^{2}}{i\upsilon_{m}\lambda_{1}^{2}} \left(1 - \frac{2}{kh'} \frac{\frac{i\overline{\omega}}{\upsilon_{m}}}{sh\left(\lambda_{1}\frac{h'}{2}\right) + \frac{k}{\lambda_{1}}ch\left(\lambda_{1}\frac{h'}{2}\right)} \frac{sh\left(\lambda_{1}\frac{h'}{2}\right)}{\lambda_{1}^{2}} \right),$$
(23)

где $\lambda_1 = \sqrt{k^2 - [(i \overline{\omega})/(v_m)]}$. Для вышеуказанных значений параметров $|\lambda_1[(h')/2]| \ll 1$ и (23) дает

$$\overline{\omega}^2 = \omega_{00}^2 + \frac{a_1^2 \overline{\omega}}{i \upsilon_m} \frac{1}{1 - \frac{i \overline{\omega}}{\upsilon_m k} \frac{h'}{2}}.$$
(24)

Расчеты Re $\overline{\omega}$ согласно (23) и (24) дают почти совпадающие величины, которые приведены в табл. 3,4. Сравнение результатов табл. 2, полученных по точному пространственному подходу для R = 10^8 см, с результатами табл. 4, основанными на гипотезе Кирхгофа, показывает, что имеется качественное соответствие характера изменения величин в кривых Re $\omega(H_0)$,

 $\operatorname{Re}\overline{\omega}(\operatorname{H}_{0})$, которые начиная от значений $\omega = \omega_{00}$, $\overline{\omega} = \omega_{00}$ для случая $a_{1} = 0$ уменьшаются, а затем возрастают, но количественно результаты обеих таблиц совершенно различны. Те же заключения получены при сравнении табл. 1 с табл. 3 для $\operatorname{R} = 10^{3}$ см.

Институт механики НАН РА

Литература

1. *Амбарцумян С. А., Багдасарян Г. Е., Белубекян М. В.* Магнитоупругость тонких оболочек и пластин. М. Наука. 1977. 272 с.

2. *Амбарцумян С. А., Багдасарян Г. Е.* Электропроводящие пластинки и оболочки в магнитном поле. М. Изд-во физ-мат. лит. 1996. 286 с.

3. *Амбарцумян С. А., Белубекян М. В.* Колебания и устойчивость токонесущих пластин. Ереван. Изд-во НАН Армении. 1992. 124 с.

4. Багдоев А. Г., Мовсисян Л. А. - Изв. НАН Армении. Механика. 1999. Т. 52 N1. С. 25-30.

5. *Саркисян В. С., Саркисян С. В., Джилавян С. А., Саргсян А. Л.* - Механика. Ереван. ЕГУ. 1980. С. 45-56.

6. Новацки В. Теория упругости. М. Мир. 1975. 863 с.

7. Багдоев А. Г., Саакян С. Г. - Изв. РАН МТТ. 2001. N5. С. 35-42.

8. Bagdoev A. G., Vantsyan A. A. - Int. Journal of Solids and Structures. 2002. N39. P. 851-859.

9. Сафарян Ю. С. - Информационные технологии и управление. 2001. N2. С. 17-49.

10. Багдасарян Г. Е., Белубекян М. В. - Изв. АН АрмССР. Механика. 1967. Т. 20. N5. С. 21-27.

11. Кольский Г. Волны напряжения в твердых телах. М. 1955. 192 с.

12. *Багдоев А. Г., Варданян А. В.* В сб.: Проблемы динамики взаимодействия деформируемых сред. Горис. 2005. С. 77-81.

ՀՀ ԳԱԱ թղթակից անգամ Ա. Գ. Բագրոև, Ա. Վ. Վարդանյան, Ս. Վ. Վարդանյան

Գծային ծռման տատանումների հաՃախությունների որոշումը մագնիսաառաձգական գլանային թաղանթում

Դիտարկվում է գլանային մագնիսաառաձգական թաղանթը առանցքային մագնիսական դաշտում։ Տարածական մոտեցումով անալիտիկ և թվային մեթոդներով ստացված են ծռման ալիքների հաձախությունները։

Corresponding Member of NAS RA A. G. Bagdoev, A. V. Vardanyan, S. V. Vardanyan Linear Bending Vibrations Frequencies Determination in Magnetoelastic

Cylindrical Shells

The linear bending vibrations frequencies in magnetoelastic cylindrical shells in axial magnetic field are determined. The solution is obtained by space treatment of analytic and numerical investigations.