Академик В. С. Захарян, М. М. Мирзоян

Усиление теоремы Мейера о граничном поведении эквиморфных функций

(Представлено 6/V 2005)

В настоящей работе усиливается теорема Мейера ([1], с. 204) для эквиморфных в единичном круге D функций по произвольным касательным путям [2], а также для эквиморфных функций доказываются две теоремы о свойствах P-последовательности [3,4] и о максимальности предельного множества теоремы Коллингвуда ([1], с. 108) по произвольным касательным путям.

1. Пусть D : $|\mathbf{z}| < 1$ - единичный круг, Γ : $|\mathbf{z}| = 1$ - единичная окружность, Ω - сфера Римана (на протяжении всей работы обозначения D, Γ и Ω остаются теми же). Пусть h : D \to D - такой гомеоморфизм круга D на себя, что отображения h, h⁻¹ равномерно непрерывны относительно гиперболической метрики единичного круга $d\sigma(\mathbf{z}) = (1 - |\mathbf{z}|^2)^{-1}|d\mathbf{z}|; \ \sigma(\mathbf{z}_1,\mathbf{z}_2)$ обозначает расстояние между точками $\mathbf{z}_1,\mathbf{z}_2 \in D$ в гиперболической метрике. Такие гомеоморфизмы принято называть эквиморфизмами [5].

В работе Х. Э. Мехия [2] введено понятие эквиморфной функции и доказано, что множество эквиморфных функций строго содержит в себе множество квазиконформных функций [6].

Эквиморфной функцией называется функция $f:D\to \Omega$, которая допускает представление f=g о h, в котором $h:D\to D$ эквиморфизм и $g:D\to \Omega$ мероморфная функция, нетождественно равная постоянной.

Пусть $\xi=e^{t\theta}\in\Gamma$. Для произвольных действительных чисел α и q, $0<\alpha<\infty;$ $q\geq0,$ назовем правым q-путем $L^+(\xi,q,\alpha)$ всякую кривую, которая задается непрерывной на [0;1) функцией z=z(t) со свойствами:

$$\lim_{t\to 1} z(t) = \xi; \quad |z(t)-\xi| < \frac{1}{2}; \quad \theta < \arg z(t) < \theta + \frac{\pi}{6}, \quad \arg z(t) \to 0 \quad (\text{монотонно}),$$
 при $t\to 1$ и $\lim_{t\to 1} (1-|z(t)|)|\arg z(t) - \theta|^{-q-1} = \alpha.$

Обозначим через $L^-(\xi,q,\alpha)$, $0<\alpha<\infty$; $q\geq 0$, и назовем левым q-путем образ правого q-пути $L^+(\xi,q,\alpha)$ при симметрии относительно радиуса $h(\xi,0)$ круга D в точке $\xi\in\Gamma$. Правые и левые q-пути назовем q-путями $L(\xi,q,\alpha)$ (или просто $L(\xi,q)$). Для произвольных $\alpha>0$, $\beta>0$, $q_1\geq 0$, $q_2\geq 0$, $0<\delta<[1/2]$ назовем (q_1,q_2) -углом в точке $\xi\in\Gamma$ и обозначим через $\Delta(\xi,q_1,q_2,\alpha,\beta,\delta)$ (или просто $\Delta(\xi,q_1,q_2)$), если нас не интересуют размеры этого угла) подобласть круга D, ограниченную двумя

разными $L(\xi,q_1,\alpha)$ и $L(\xi,q_2,\beta)$ путями (возможен случай $q_1=q_2$) и окружностью $|z-\xi|=\delta$, где δ достаточно малое положительное число.

2. Для произвольной комплекснозначной функции $f: D \to \Omega$, произвольной точки $\xi \in \Gamma$ и произвольного множества $S \subset D$, для которого точка ξ является предельной точкой, рассмотрим предельное множество $C(f,\xi,S)$ функции f в точке ξ по множеству S в виде $C(f,\xi,S) = C(f,\xi,S)$

$$\bigcap_{r>0}\overline{f\left(V_r(\xi)\cap S\right)}, \ \ \text{где}\ V_r(\xi)=\{z\in D;\, |z-\xi|< r\},\, r>0\ \text{и черта}\ \text{- замыкание множества}.$$

Пусть A - произвольное конечное множество неотрицательных чисел. Точку $\xi \in \Gamma$ отнесем к множеству $P_A(f)$, если каждый q-путь $L(\xi,q)$ содержит P-последовательность [3] функции f(z). Точку $\xi \in \Gamma$ отнесем к множеству $E_A(f)$, если для любого (q_1,q_2) -угла $\Delta(\xi,q_1,q_2)$, $q_1,q_2 \in A$, справедливо $C(f,\xi,\Delta(\xi,q_1,q_2)) = C(f,\xi,D)$. Точку $\xi \in \Gamma$ отнесем к множеству $K_A(f)$, если для любых двух (q_1,q_2) и (q_1',q_2') -углов $\Delta(\xi,q_1,q_2)$ и $\Delta(\xi,q_1',q_2')$, $q_1,q_2,q_1',q_2' \in A$, имеем $C(f,\xi,\Delta(\xi,q_1,q_2)) = C(f,\xi,\Delta(\xi,q_1',q_2'))$. Ясно, что $E_A(f) \subset K_A(f)$.

3. Справедлива следующая

Теорема 1. Пусть f(z) эквиморфная в круге D функция, $f:D\to \Omega$, имеет каноническое представление f=g o h. Тогда q-путь $L(\xi,q)$ не содержит P-последовательностей для f(z) в том и только в том случае, когда найдется (q_1,q_2) -угол $\Delta(\xi,q_1,q_2)$, содержащий $L(\xi,q)$, в котором C $(Q_p\xi,\Delta(\xi,q_1,q_2))$ ограничено, где

$$Q_{f}(z) = (1 - |h(z)|^{2}) \cdot |g'(h(z))| \cdot (1 + |g(h(z))|^{2})^{-1}.$$

Необходимость. Допустим противное, т.е. для любого (q_1,q_2) -угла $\Delta(\xi,q_1,q_2)$, содержащего L (ξ,q) , множество $C(Q_f,\xi,\Delta(\xi,q_1,q_2))$ не ограничено. Тогда согласно лемме 1 из [7] для любого $\epsilon > 0$ существуют такие $\delta, 0 < \delta < 1$, и (q,q)-угол $\Delta(\xi,q,q)$, что

$$L(\xi,q) \cap \{z; \, |z-\xi| < \delta\} \subset \Delta(\xi,q,q) \subset \{z \in D; \sigma(z;L(\xi,q)) < \epsilon\}.$$

Не нарушая общности, будем обозначать q-путь $L(\xi,q) \cap \{z; |z-\xi| < \delta\}$ опять символом $L(\xi,q)$. Но по допущению $C(Q_{\rho}\xi,\Delta(\xi,q,q))$ не ограничено. Следовательно, существует

последовательность точек $\{z_n\}$, $z_n\in \Delta(\xi,q,q)$, по которой $\lim_{n\to\infty}Q_f(z_n)=\infty$. Тогда найдется подпоследовательность $\{z_i\}$ из $\{z_n\}$ такая, что

$$\lim_{j\to\infty}\sigma(z_j,L(\xi,q))=0\ \ \text{ii} \ \lim_{j\to\infty}Q_f(z_j)=\infty.$$

Пусть $\{z_j'\}$ такая последовательность точек на q-пути $L(\xi,q)$, для которой $\lim_{j\to\infty} \sigma(z_j,z_j')=0$. Тогда согласно теореме 6 из [2] последовательность точек $\{z_j'\}$ является P-последовательностью для f (z), что невозможно. Противоречие.

Достаточность. Допустим противное, т.е. по некоторому (q_1,q_2) -углу $\Delta(\xi,q_1,q_2)$, содержащему

q-путь $L(\xi,q)$, множество $C(Q_p\xi,\Delta(\xi,q_1,q_2))$ ограничено и q-путь $L(\xi,q)$ содержит Р-последовательность $\{z_n\}$ для функции f(z). Тогда согласно лемме 1 из [7] найдется такой угол $\Delta(\xi,q,q)$, что $L(\xi,q)\subset\Delta(\xi,q,q)\subset\Delta(\xi,q_1,q_2)$, и значит, множество $C(Q_p\xi,\Delta(\xi,q,q))$ ограничено. Так как q-путь $L(\xi,q)$ содержит Р-последовательность, то в силу теоремы 4 из [2] найдется такая

последовательность $\{z_n{'}\}$, $\lim_{n\to\infty}\sigma(z_n,\,z_n{'})=0$, по которой $\lim_{n\to\infty}Q_f(z_n{'})=\infty$. Начиная с некоторого номера п все точки $z_n{'}$ попадут в (q,q)-угол $\Delta(\xi,q,q)$, и значит, $C(Q_f,\xi,\Delta(\xi,q,q))$ не ограничено. Это противоречие доказывает теорему 1.

Замечание. В случае, когда q = 0 и f - мероморфная в D функция, теорема 1 доказана в [8], а в случае, когда q = 1 и f - мероморфная в D функция, она усиливает лемму 2 из [9].

4. Справедлива следующая

Теорема 2. Пусть A - произвольное конечное множество неотрицательных чисел. Если для эквиморфной в D функции $f: D \to \Omega$ в некоторой точке $\xi \in K_A(f)$, множества $C(Q_f, \xi, \Delta(\xi, q_1, q_2))$ ограничены для любого (q_1, q_2) - угла, $q_1, q_2 \in A$, то для каждого q-пути $L(\xi, q)$, $q \in A$, множества $C(f, \xi, L(\xi, q))$ одинаковы и совпадают с множеством $C(f, \xi, \Delta(\xi, q_1, q_2))$. В частности, если в точке $\xi \in E_A(f)$ множество $C(Q_f, \xi, D)$ ограничено, то для любого q-пути $L(\xi, q)$, $q \in A$, справедливо

$$C(f,\xi,L(\xi,q)) = C(f,\xi,D).$$

Замечание. В случае, когда $A = \{0\}$ и f - мероморфная в D функция, теорема 2 доказана в работе [8] а в случае, когда $A = \{0;1\}$ и f - мероморфная в D функция, она является усилением леммы 3 из [9].

5. Пусть f - произвольная функция в круге D и A - произвольное конечное множество неотрицательных чисел. Точку $\xi \in \Gamma$ отнесем к множеству $M_A(f)$, если для произвольного q-пути $L(\xi,q),\ q\in A$, имеем $C(f,\xi,L(\xi,q))=C(f,\xi,D)\neq\Omega$. Точку $\xi\in\Gamma$ отнесем к множеству $I_A(f)$, если для произвольного (q_1,q_2) -угла $\Delta(\xi,q_1,q_2),\ q_1,q_2\in A$ имеем $C(f,\xi,\Delta(\xi,q_1,q_2))=\Omega$. Ясно, что для произвольной функции $f:D\to\Omega$ множества $I_A(f),\ M_A(f)$ являются непересекающимися подмножествами множества $K_A(f)$.

Справедлива следующая теорема, которая является усилением теоремы 1 из [7].

Теорема 3. Пусть f произвольная функция $f: D \to \Omega$, a A произвольное конечное множество неотрицательных чисел. Тогда $\Gamma = E_A(f) \cup F$, где F - множество первой категории и типа F_σ на Γ .

Замечание. В случае, когда $A = \{0\}$, теорема 3 доказана Е. П. Долженко ([1], с. 249), в случае, когда $A = \{0;1\}$, она усиливает лемму 1 из [9].

Теорема 4. Для произвольной эквиморфной в круге D функции $f: D \to \Omega$ и для произвольного конечного множества A неотрицательных чисел справедливо

$$E_{\Delta}(f) = M_{\Delta}(f) \cup I_{\Delta}(f).$$

Для доказательства теоремы 4 достаточно доказать вложение $\mathrm{E}_{\mathrm{A}}(\mathrm{f}) \subset \mathrm{M}_{\mathrm{A}}(\mathrm{f}) \cup \mathrm{I}_{\mathrm{A}}(\mathrm{f})$, поскольку обратное вложение следует из определений участвующих в нем множеств. Рассмотрим

произвольную точку $\xi \in E_A(f)$, в которой $C(f,\xi,D) \neq \Omega$. Тогда согласно теореме 4 из [2] $\lim_{z \to \xi} \sup Q_f(z) < \infty$, $z \in D$, и значит, в силу теоремы 2 $\xi \in M_A(f)$. В случае, когда $C(f,\xi,D) = \Omega$, заключаем, что $\xi \in I_A(f)$, т.е. теорема 4 доказана.

Замечание. В случае, когда f - мероморфная в D функция, теорема 4 усиливает лемму 4 из [7], а в случае, когда $A = \{0\}$ и f - мероморфная в D функция, она доказана в [10].

Объединяя результаты теорем 3 и 4, получаем следующую теорему, которая является усилением теоремы Мейера ([4], с. 204).

Теорема 5. Для произвольной эквиморфной в D функции $f: D \to \Omega$ и для произвольного конечного множества A неотрицательных чисел справедливо разложение

$$\Gamma = M_{\Delta}(f) \cup I_{\Delta}(f) \cup F$$
,

где F - множество первой категории и типа F_{σ} на Γ .

Замечание. В случае, когда f - мероморфная в D функция, теорема 5 усиливает теорему 3 из [7], в случае, когда $A = \{0\}$ и f - эквиморфная в D функция, она доказана в работе [2], в случае, когда $A = \{0\}$ и f - мероморфная в D функция, - в работе [10], а в топологических пространствах сходные теоремы доказаны в работах [11-13].

Государственный инженерный университет Армении

Литература

- 1. Коллингдвуд Э., Ловатер А. Теория предельных множеств. М. Мир. 1971. 312 с.
- 2. Мехия Х. Э. ДАН СССР. 1982. Т. 265. N1. C. 35-38.
- 3. Гаврилов В. И. Матем. сб. 1965. Т. 67 (109). N3. C. 408-427.
- 4. Гаврилов В. И. Матем. сб. 1966. Т. 71 (113). N3. С. 386-404.
- 5. Ефремович В. А. Матем. сб. 1952. Т. 31. Вып. 1. С. 189-200.
- 6. Lehto O., Virtanen K. I. Quasiconformal mappings in the plane. Berlin. Springer-Verlag. 1973.
- 7. *Мирзоян М. М.* ДАН Арм. ССР. 1978. Т. 66. N4. С. 200-204.
- 8. Гаврилов В. И. ДАН СССР. 1974. Т. 216. N1. С. 21-23.
- 9. *Айрапетян А. Н., Гаврилов В. И.* Изв. АН Арм.ССР. Математика. 1976. Т. 11. N5. С. 390-399.
 - 10. Гаврилов В. И., Канатинков А. Н. ДАН СССР. 1977. T. 233. N1. C. 15-17.
- 11. *Гаврилов В. И., Канатинков А. Н.* Математички весник. 1988. (40). Херцег-Нови. Югославия. С. 217-223.
- 12. *Гаврилов В. И., Канатинков А. Н., Кравцев С. В., Симушев А. А.* Математички весник. 1986. (38). Будва. Югославия. С. 437-450.
 - 13. *Абду Аль-Рахман Хасан* ДАН СССР. 1981. Т. 260. N4. C. 777-780.

Ակադեմիկոս Վ. Ս. Զաքարյան, Մ. Մ. Միրզոյան

Մեյերի Էկվիմորֆ ֆունկցիաների եզրային վարքի վերաբերյալ թեորեմի ուժեղացումը

Հոդվածում էկվիմորֆ [2] ֆունկցիաների համար տրվում են երկու թեորեմներ Գավրիլովի P-հաջորդականության [3] և Կոլինգվուդի մաքսիմալության թեորեմի ([1], էջ 108) վերաբերյալ՝ միավոր շրջանագծի հետ կամայական շոշափման կարգ ունեցող ուղիների երկայնքով։ Այնուհետև ուժեղացվում է Մեյերի թեորեմը ([1], էջ 204) էկվիմորֆ ֆունկցիաների համար, ինչպես նաև ընդհանրացվում է Դոլժենկոյի ([1], էջ 249) թեորեմը՝ կամայական շոշափող ուղղություններով կամայական ֆունկցիաների համար։

Academician V. S. Zakaryan, M. M. Mirzoyan

Strengthening of Meier's Theorem about Boundary Behaviour of Equimorphic Functions

In this paper for equimorphic [2] functions two theorems are given about Gavrilov's P-sequence [3] and Collingwood's maximality theorem ([1], p.108) along lines that have arbitrary tangential order with the unit circle. Afterwards Meier's theorem is strengthened ([1],p.204) for equimorphic functions, as well as Dolzhenko's theorem ([1],p.249) along arbitrary tangential directions is generalized for arbitrary functions.