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1. The term semi-magic square is attributed to an nxn real matrix having the sum of elements in
each row and each column equal to an identical constant (see [1], for instance). As was shown in
[2], the Moore - Penrose inverse of a semi-magic square is semi-magic as well. In this paper we
introduce more general classes of matrices (see Definitions 1.1 and 2.1 below) and establish a similar
property of their Moore - Penrose inverse.

Let R"be the space of real n-dimensional column vectors and R™" be the space of real

mxn matrices.

Definition 1.1. A matrix A = [ai].] e R™" is referred to as magic rectangle if there exist constants
rand csuch that the sum of elements in each row and each column is equal to rand c,
respectively, i.e.

n

Zai];r, i=1,2,...m, (1.1)
j=1

m

Z ai]. =c, j=12,..n. (1.2)
i=1
We will call the constants r and ¢ row sum and column sum, respectively.

Example 1.1. The matrix

(10 5 1
A= |
| 34 -1 |

is a magic rectangle withr=6and c=4. <
Let us denote by MR(m, n) the set of m x n magic rectangles. It can be readily shown that MR

(m,n) is a subspace of R™". Next, MR(m, n; 1, c) will denote the set of mxn magic rectangles with
row sum r and column sum c. Let e = [11...1]T be the n-dimensional column vectors of ones. Then

the properties (1.1) and (1.2) can be written, respectively, as follows:



Ae_=re_, ATeIrl =ce._. (1.3)

n

It can be easily found the following relation between row sum, column sum and the size of the
martrix:

mr = nc. (1.4)

Basing on the relation (1.4), we can use another notation for the set of magic rectangles with fixed
row sum and column sum. Namely, simultaneously with the notation MR(m, n; r, ¢) we will use a
notation MR[m, n : y] which implies that r = ny and ¢ = my.

Obviously, for m = n a magic rectangle becomes a semi-magic square.

2. Let us define a class of block matrices composed of magic rectangles.

Definition 2.1 A matrix A = [ai].] e R™" represented in the block form

Ir A A Agg 1|
A A A
21 22 - 2
A:I d I 2.1)
| |
LAy Ay . Ay

with submatrices Aij € MR(mi, 11].; rij’ Cij) (or Aij € MR[mi, n]. : yi].] , in another notation), where i=

1,2,..,p, j=12,..,qgand %mi =m, %nj =n, will be referred to as block magic rectangle.
i=1 i=1

Insert diagonal matrices

m,

[ 1
I i
M =| | e R4 (2.2)
| |
| |
L |

and p x q matrices



[ T11 T2 - Tiq ] [ €11 ©12 - €19 ]
Ri T21 T22 . Tpq I Ci €21 €22 - C2q 23)
| | | |
. p1 Tp2 - Tpq ! L “p1 “p2 - Spq :
into our consideration. By
BMR(M, N; R, C) (2.4)

we will denote the set of block magic rectangles partitioned into blocks correspondingly to (2.2)
with row sums and column sums defined by the matrices (2.3).
In accordance with relation (1.4) and notation accepted in the previous section, we have

T =Ty &= 1™y (2.5)

for i=1,2,...,pand j=1,2,.,q . Consider a matrix

I'= (2.6)
o1 Tp2 - Ypg
Then the relations (2.5) can be written in the matrix form:
R=TN, C=MTI. 2.7)

Therefore, we will also use another notation for the set of block magic rectangles (2.4), that is
BMR[M,N:I7]. (2.8)
The properties (1.3) for the blocks of matrix (2.1) look as
T
Aijenj =T1ye m Aij emli = ci].erlj , 2.9)

where i=1,2,..,pand j=1,2,...,q . Let us define block matrices

{eml 0 .. 0 ] {e% 0 .. 0 }

0 €m .. 0 | | 0 €. .. 0 |
Empzl 2 i c R™P Enqzl 2 I c R4
| | | |
L o o0 ..%m J L o o .. % |

P q



with blocks of the size m, x 1, i=1,2,...,p (in the matrix Emp) and n]. x1,j=1.2,..,q (in the
matrix Enq). By a straightforward verification it can be easily shown that relations (2.9) are

equivalent to the following ones:

AE -E R, ATE
nq mp m

-E CT.
P nq

RI'IlXIl

3. Remind, that the Moore-Penrose inverse A" € R™™ of a matrix A € is uniquely

determined by the properties

a) AATA-A, b) ATAAT- A",

o (A*A)T=A*A, d) (AAHT=AA"

(see [3], for instance).
The main result of the paper is formulated as follows.

Theorem 3.1 If A € BMR(M, N; R, C) then A" ¢ BMR(N, M ; K, C), where

Let us give an equivalent formulation of Theorem 3.1, connected with the notation of type (2.8)
for a set of block magic rectangles.

Theorem 3.1A If A € BMR[M, N : '] then A* ¢ BMR[N, M : I"], where

Example 3.1. Consider a block magic rectangle

10511

0
I34—1110
| 10 21422

2

2

2

12015
|10233
| 120142

According to (2.2),(2.3),(2.5),(2.6), we have

and



[ 620 | [ 4 2 0 | [ 210 |
R=| , C=]| |, T =] | .
1362 | | 4128 | | 132 |

The Moore-Penrose inverse of the matrix A calculated using MATLAB is

—0.2411 0.4256 | 0.3212 -0.1788 0.4879 —0.6788 |
0.2589 -0.0744|-0.2788 0.1212 -0.4121 0.5212 I
0.2589 -0.0744(-0.0788 0.0212 -0.1121 0.1212 |
|
|

—-0.0267 -0.0267| 0.0864 —0.1136 —0.0136 0.1864
| -0.0267 -0.0267|-0.0136 0.1864 0.0864 -0.1136 |
| —0.0583 —0.0583| 0.0340 0.0340 0.0340 0.0340 |

:
|
|

|

A=
|

For this matrix

E -0.0534 0.0728

b

|F 0.1845 —0.0485 |F 0.2767 —0.0364
| |

|

1
|
-0.0534 0.1456 |, @&
|
|

L_O'1165 0.1359 L_O'OSSB 0.0340

|F 0.0922 -0.0121 1|
| —0.0267 0.0364 |
|

i —-0.0583 0.0340 J
It is of interest to examine some particular cases of block magic rectangles for which the general
formula, describing the Moore-Penrose inverse, is considerably simplified.
Case 1. Suppose that in block representation (2.1) p=q=1,i.e.let A € MR(m, n;r,c). Then, by
formulae (3.1) and (3.2), we get

n—1/2(m1/2rn—1/2)+m1/2 _ n—1/2n1/2r+m—1/2m1/2 _

?: =r bl

= 12126 2y V2 1212 12 12

N

Recall that for a scalar a , which can be considered as 1 x 1 matrix, a*=1/a,if a#0,and a* =0,
if a=0. So, we arrive at the following statement.

Theorem 3.2 If A € MR(m, n; 1, c) then A" € MR(n, m;r",c").
Note, that the last proposition has been obtained recently in [4].

We can also give an equivalent formulation of Theorem 3.2 . Let A € MR[m, n : y] . According to
(3.3), we find



1

—1/2(m1/2yn1/2)+m—1/2 _ n—1/2n—1/2y+m—l/2m—1/2 _— v

¥=n Y
mn
Thus, the result can be stated as follows.
Theorem 3.2A If A € MR[m, n : y] then A* € MR[n, m : (mn) ! y'].
Case 2. Let in block form (2.1) my=m,=..=m= k and ny=ny=..=n = 1. Itis clear, that k

=m/p and 1=n/q. Thereby, according to (2.2), we have M = kIp and N = IIq where Ip and Iq are

identity matrices of pth and qth order, respectively. In this case our formulae (3.1) and (3.2)
become extremely simple, i.e.

Thus, we get
Theorem 3.3 If A € BMR(kIp, IIq ;R ,C) then A" € BMR(IIq, kIp ;RY,CH.

Next, from (3.3) we obtain

—~ 1 1
T=— (kDY =—1"
g VD=

Consequently, the result may be formulated as follows.
Theorem 3.3A If A € BMR[kIp, IIq: ['] then A" € BMR[Hq, kIp (k)T
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8oL [T, Zwlnpywb, U. L. Bnjul

Unip - NEipnmgh hwljunupdp pppughtt dunnphgutph dky quuh hudap

Yhuwjwhwpujut punwlniuhtibp waduimd Gu poynp iinnbpnud b ymitkponuod tappbph
hwJuuwp gnudwipubtp niikgnn n X n dwnphgutpp: Znpjusnid wyju hwuljugnipmiip mupusynud |
hwwnnily wnbkuph pniughtt dwnphgubph npuuh Jpw, nptt wuduuly Gu gniughén jupnuppului
mypublynibialp: Uygugmgynud £, np pnjught jupuoppuljut mpnutljjut Unip-NMEupnnigh
hwljunupdnudp noipu sh pipmd dwinphgp wyy nuuh opgwtuljubphg:

IO. P. Axonsan, A. H. Djoan

Oopatnas matpuna Mypa - [leHpoy3a 1Jis1 0AHOTO KJIacca 0JIOYHBIX MATPHUIL

[TomymarnyeckuMu KBaapaTaMu HA3bIBAIOTCS N X N MaTPHIIBI, Y KOTOPBIX CYMMa 3JIEMEHTOB BO
BCEX CTPOKaxX M cTONOIaxX ofuHaKoBa. B HacTosmell cTarbe 3T0 MOHsATHE 0000IaeTCs Ha CreHalb-
HBIA KJIacC OJIOYHBIX MAaTpHILl, KOTOpbIE ObUIM Ha3BaHBl OJOYHO-MAarHYECKUMH MPSMOYTOJIbHUKAMHU.
JlokasbiBaetcsi, uto oOpamieHre Mypa - [lenpoy3a 0J104HO-Marnueckoro NpsiMOyrojibHUKa HE BEIBOJAUT

MaTpHILy 3a TpEeAeIbl ATOTO Kilacca.



