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1. Introdaction. Many actual scientific and technological problems of modern engineering are
connected with the investigatins of processes of propagation of waves in piezoelectrics and with the
definition of dynamic strength in the vicinity of heterogeneities of various types. Solution of
appearing in this case of complicated problems requires the usage of modern mathematical means
and, in particular, methods and approaches of the dynamic theory of elasticity. Development of
these methods is reflected in monographs [1-5] which appeared during the last decades. The
procedure of application of the method of boundary integral equations to investigations of
diffraction problems of electroelastic waves is developed in [6].
   In the given article there is constructed an analitical algorithm for investigation of coupled fields
in a piezoceramic medium, weakened by heterogenities of tunnel types along the axis of the
material symmetry of the opening and rigid linear inclusions (stringer). The excitation of oscillations
in the medium takes place due to the harmonically changing with time shear stresses acting on the
surfaces of the cavities.

2. Statement of the problem. Consider the referring to the Cartesian system of coordinates x1x2x3
piezoceramic space, containing tunnel in the direction of axis x3 opening j(j = 1,2, ,n1), 

strengthened by rigid curvilinear stringer Lm(m = 1,2, ,n2). Excitation of an electroelastic field in 

the medium takes place under the influence of the prescribed on the surface of the openings
harmonically changing with time, not depending on coordinate x3 shear forces X3n = Re(X3e iwt) (t 

is the time, is the circular frequency). Assuming that the vector of preliminarily polarization of
piezoceramics is directed along axis x3, considering two variants of the electric boundary condition:

the surfaces of the openings are electrodized and grounded (variant A); the surfece of the openings
are bounded with vacuum (variant B). We will also assume that functions X3 and the curves of 

contours j and Lm satisfy the Holder condition [7].

   Under the given conditions in a piecewise-homogeneous space we have an electroelastic field
corresponding to the state of antiplane deformation. The full system of the equations in a quasistatic
approximation includes the following relations [5]: 

equation of motion  1 13 + 2 23 =

2u3

t
2

,   i =
xi

(2.1)



material equations of a medium 

   In (2.1) - (2.3) m3 are the components of the stress tensor, u3 is the component of the elastic 

displacement vector in the direction of axis x3; and are the vectors of strenght and induction of 

an electric field;  is the electric potential; cE
44, e15 and 11 are the shear modulus, measured at 

constant value of an electric field, the piezoelectric constant and dielectric permeability, measured
at fixed deformation, respectively;  is the mass density of the material.
   The system of equations (2.1) - (2.3) will be brought to differential equations with respect to
displacement u3 and electric potential : 

From (2.4) we have the following relations 

where c is the velocity of a shear wave in the piezoceramic medium, k15 is the factor of a 

mechanical coupling [5].
   Mechanical and electric quantities taking into account (2.2), (2.3) and (2.5) may be expressed as
functions u3 and F over formula 

m3 = cE
44 mu3 e15Em,   Dm = e15 mu3 + 11 Em    (m = 1,2) (2.2)

equations of electrostatics  div D = 0,    E = grad .             (2.3)
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   Assuming u3 = Re(U3e iwt),  = Re( *e
wt) and F = Re(F*e iwt) we will write down equations (2.5) 

with respect to amplitude quantities (where  is the wave number). 

   Assuming that the insert is fixed, let us represent the mechanical and electric boundary conditions
on contour L = Lm as follows 

   Here Es and Dn are tangential component of an electric strength vector and the normal

component of an electric induction vector, respectively sign "plus" and "minus" refer to the left and
right edges of inclusion Lm the moment from its beginning am to end bm (Fig.1).

   To obtain an efficient, in the sense of numerical realization of the system of integral equetions,
boundary condition (2.8) it is recommended to differentiate over arc coordinates 

   The mathematical record of the boundary conditions on contour  = j for the considered 

variants of boundary conditions has the form 

   Boundary equalities (2.12) and (2.13) satisfy variants A and B, respectively. Below instead of (2.12)
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we will use condition 

   Thus, the problem consist of the determining of functions U3 and F* from differential equations 

(2.7) and boundary conditions (2.9) - (2.11), and also (2.13) or (2.14).
3. Solvable system of singular integral equatins of boundary problems of

electroelastisity. Constructing the integral representations of functions U3 and F* we will use the 

fundamental solution of the system of equations (2.4) in case, when the dependence on time has
harmonical character. In this case we proceed from the system of equatons [6]: 

   Here P0 and Q0 are linear densities of concentrated shear conditions and charges, acting at point

z0 = x10 + ix20 of the medium; (x,y) = (x) (y) is the Dirac -function. The solution of equations 

(3.1) is found simply and is determined by formulas 

According to (3.2) we will write the representations of the solution in the form 
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Here H (1)(x) is the Hankel’s function of the first kind of order , ds is the element of arc length of 

the contour, over which the integration is carried out. It is easy to become convinced that the
determined in (3.3) functions U3 and F* automatically satisfy electric conditions (2.9) on L and

radiation conditions at infinity, and also provide the carrying out of equality [U3] = U3
+ U3 = 0 in 

(2.8). Unknown "densities" q( ), p( *) and f( *) are determined from the complex system of three
integral equations, which are obtained as a result of substitution of limiting values corresponding to
derivative functions (3.3) at z L and z * in boundary conditions (2.10), (2.11), and also 
(2.13) or (2.14). The given system will be represented in the form: 
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In case when  = 0 on contour  (variant A), we have 

Satisfying boundary conditions Dn = 0 on contour (variant B) in (3.4) it is necessary to put 

   In (3.4) - (3.6) by quantities  = ( ) and 1 = 1( *) are designated the angles between axis x1 and 

normals to contour L and , respectively.
   Having determined functions q( ), p( *) and f( *) over formulas (2.6) taking into account integral
representations (3.3) we may calculate all the components of the electroelastic field in the field. At
e15=0 system (3.4) will correspond to a piezopassive (isotropic) space.

4. Determination of the concentration of stresses in a piecewise-homogeneous space. Calculate shear 
stress s = 23cos 1 13sin 1 on the surface of an opening. Taking into account (2.2) we find 
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   Substituting into (4.1) the limiting values of derivatives U3/ s, F*/ s at z 0
* , calculated 

with the help of representations (3.3) we will obtain the expression for amplitude of shear stress Ts

Appearing in (4.2) function G7( , 0
*), G8( *, 0

*) are determined in (3.5). 

   Formula (4.2) permits to investigate the concentration of stresses in the space according to the
frequency of excitation, position and configuration of heterogenities. Here we also should mention
the circumstance concerning the behaviour of electroelastic quantities in the vicinity of the
inclusion. From the integral representations of the displacement amplitude in (3.3) we obtain
equality 

where the square brackets designate the jump of the corresponding quantity on L. From relations
(2.2), (2.7) and (2.9) it follows that 

From expressions (4.3), (4.4) we obtain equality 

Thuse, on the basis of (4.5) function q( ) may be interpreted as intensity of contact forces of
interchange of the rigid inclusion and medium. From here it follows that for equilibrium of the
inclusion there should be performed equality 

Condition (4.6) should be considered as an additional one when solving the system of singular
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integral equations (3.4) in the class of functions, not restrained on tips L [5]. Due to (2.2), (2.9) and
(2.10) we have 

   On the basis (4.7) we may conclude, that electric induction vector is continuous in the area of a 

cylinder, and electric stress vector undergoes on the inclusion. If we consider a crack contour
(mathematical cut) as L, in case when the prescribed on its edges stresses are self-balancing, vector 

undergoes a jump on L, and is continuous [6].
5. Results of calculations. As an example consider a space with circular opening and linear

inclusions, orientated under angle  to axis Ox1 (material is ceramics PZT-4 [8]). Parametric 

equations of contour L has the form 

   Solution of system (3.4) together with additional condition (4.6) taking into account (5.1) was
carried out numerically by the method of quadratures [9, 10].
   In Fig.2 there is shown the change of quantity  = Ts/Z  at point of the contour of opening  = in 

the function of normalized wave number *R = at  = 0, h/R = 3, g/R = 1.5 ( is the polar 

3 = Zsin(m ) 

(m = 1,2,3). The full lines conform to variant A, the dashed ones to variant B. It is seen that by
increasing parameters in peak values *R dispeace to the right.

Concluding remarks. The represented approach to the solution of the stationary dynamic problem
of electroelasticity permits to investigate the influence of the inertial effect on the behaviour of the
components of the electric field in a piezoceramic space with tunnel heterogenities of a rather
arbitrary configuration. As it follow from Fig. 2 under dynamic loading quantity  may exceed its 
static analogue almost by 2.5 times (curve 3). 

Fig. 1                                               Fig. 2 
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   From the represented result of the calculations it follows that the behaviour of the electric and
mechanical quantities considerably depend on the frequency of the harmonic loading, mutual
position and configuration of heterogenities.
   The work was carried out in the framework of an agreement on scientific cooperation between the
National Technical University of Athens and the Institute of Mechanics of the National Academy of
Sciences of Armenia. 
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Դ. Ի. Բարձոկաս, Մ. Լ. Ֆիլշտինսկի 

Թունելային անցքերով և կոշտ ստրինգերներով պյեզոկերամիկ տարածության  
տատանումներ (հակահարթ դեֆորմացիա) 

 
Հոդվածում կառուցված է թունելային անցքերի և կոշտ գծային ստրինգերների տիպի 

անհամասեռություններով թուլացված պյեզոկերամիկ միջավայրում լծորդված դաշտերի հե-

տազոտման վերլուծական ալգորիթմ: Տատանումների գրգռումը տեղի է ունենում անցքերի 
մակերևույթների վրա ազդող և ժամանակի ընթացքում ներդաշնակորեն փոփոխվող սահքի 
լարումների հաշվին: 
 

 
Д. И. Бардзокас, М. Л. Фильштинский 

Колебания пьезокерамического пространства с туннельными отверстиями и жесткими 
стрингерами (антиплоская деформация) 

 
В статье построен аналитический алгоритм для исследования сопряженных полей в 

пьезокерамической среде, ослабленной неоднородностями типа туннельных отверстий и 
жестких линейных стрингеров. Возбуждение колебаний в среде происходит за счет гармо-
нически изменяющихся со временем напряжений сдвига, действующих на поверхностях 
полостей. 


