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1. Introdaction. Many actual scientific and technological problems of modern engineering are
connected with the investigatins of processes of propagation of waves in piezoelectrics and with the
definition of dynamic strength in the vicinity of heterogeneities of various types. Solution of
appearing in this case of complicated problems requires the usage of modern mathematical means
and, in particular, methods and approaches of the dynamic theory of elasticity. Development of
these methods is reflected in monographs [1-5] which appeared during the last decades. The
procedure of application of the method of boundary integral equations to investigations of
diffraction problems of electroelastic waves is developed in [6].

In the given article there is constructed an analitical algorithm for investigation of coupled fields
in a piezoceramic medium, weakened by heterogenities of tunnel types along the axis of the
material symmetry of the opening and rigid linear inclusions (stringer). The excitation of oscillations
in the medium takes place due to the harmonically changing with time shear stresses acting on the
surfaces of the cavities.

2. Statement of the problem. Consider the referring to the Cartesian system of coordinates X, X, Xg
piezoceramic space, containing tunnel in the direction of axis X, opening Fj(j = 12,...n),
strengthened by rigid curvilinear stringer L (m = 1,2,...,n,). Excitation of an electroelastic field in
the medium takes place under the influence of the prescribed on the surface of the openings
harmonically changing with time, not depending on coordinate x; shear forces X; = Re(Xse_th) (t

is the time, is the circular frequency). Assuming that the vector of preliminarily polarization of
piezoceramics is directed along axis x,, considering two variants of the electric boundary condition:

the surfaces of the openings are electrodized and grounded (variant A); the surfece of the openings
are bounded with vacuum (variant B). We will also assume that functions Xq and the curves of

contours Fj and Lm satisfy the Holder condition [7].

Under the given conditions in a piecewise-homogeneous space we have an electroelastic field
corresponding to the state of antiplane deformation. The full system of the equations in a quasistatic
approximation includes the following relations [5]:
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In (2.1) - (2.3) o 5 are the components of the stress tensor, u, is the component of the elastic
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displacement vector in the direction of axis x,; E and D are the vectors of strenght and induction of

3;

an electric field; ¢ is the electric potential; E 44> €5 and v®. . are the shear modulus, measured at
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constant value of an electric field, the piezoelectric constant and dielectric permeability, measured
at fixed deformation, respectively; p is the mass density of the material.

The system of equations (2.1) - (2.3) will be brought to differential equations with respect to

displacement u, and electric potential ¢:
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where c is the velocity of a shear wave in the piezoceramic medium, kg is the factor of a

mechanical coupling [5].
Mechanical and electric quantities taking into account (2.2), (2.3) and (2.5) may be expressed as

functions u, and F over formula
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Assuming u, = Re(UBe_th), b = Re(d.e ™) and F = Re(F e ™) we will write down equations (2.5)
with respect to amplitude quantities (where y is the wave number).
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Assuming that the insert is fixed, let us represent the mechanical and electric boundary conditions
on contour L = UL_ as follows

USJ—r -0, (2.8)

E'=E", D *=D". (2.9)

Here E and D_ are tangential component of an electric strength vector and the normal

component of an electric induction vector, respectively sign "plus" and "minus" refer to the left and
right edges of inclusion L._ the moment from its beginninga_ toend b_ (Fig.1).
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To obtain an efficient, in the sense of numerical realization of the system of integral equetions,
boundary condition (2.8) it is recommended to differentiate over arc coordinates
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The mathematical record of the boundary conditions on contour I' = qu for the considered
variants of boundary conditions has the form
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Boundary equalities (2.12) and (2.13) satisfy variants A and B, respectively. Below instead of (2.12)



we will use condition
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Thus, the problem consist of the determining of functions U, and F from differential equations

(2.7) and boundary conditions (2.9) - (2.11), and also (2.13) or (2.14).
3.Solvable system of singular integral equatins of boundary problems of

electroelastisity. Constructing the integral representations of functions U; and F we will use the

fundamental solution of the system of equations (2.4) in case, when the dependence on time has
harmonical character. In this case we proceed from the system of equatons [6]:
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Here P, and Q, are linear densities of concentrated shear conditions and charges, acting at point

Zy = Xy * Xy of the medium; d(x,y) = 8(x)0(y) is the Dirac d-function. The solution of equations
(3.1) is found simply and is determined by formulas
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According to (3.2) we will write the representations of the solution in the form
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Here Hv(l)(x) is the Hankel’s function of the first kind of order v, ds is the element of arc length of
the contour, over which the integration is carried out. It is easy to become convinced that the

determined in (3.3) functions U, and F automatically satisfy electric conditions (2.9) on L and

radiation conditions at infinity, and also provide the carrying out of equality [U,] = U3+ —-U; =0in

(2.8). Unknown "densities" q(§), p(Q*) and f(C*) are determined from the complex system of three
integral equations, which are obtained as a result of substitution of limiting values corresponding to

derivative functions (3.3) atz—> { € Land z —» Q* € I' in boundary conditions (2.10), (2.11), and also
(2.13) or (2.14). The given system will be represented in the form:
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In case when ¢ = 0 on contour I" (variant A), we have
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Satisfying boundary conditions D_= 0 on contour (variant B) in (3.4) it is necessary to put

1 * * * * * 1 ei\vl()
A== GG 4)) =Gy, 4)) =0, GylC, ) =—Re—. (3.6)
2 2 C_CO

In (3.4) - (3.6) by quantities y = y({) and v, = \ul((;*) are designated the angles between axis X, and
normals to contour L and I', respectively.
Having determined functions q({), p(C*) and f((;*) over formulas (2.6) taking into account integral

representations (3.3) we may calculate all the components of the electroelastic field in the field. At
e,5=0 system (3.4) will correspond to a piezopassive (isotropic) space.

4. Determination of the concentration of stresses in a piecewise-homogeneous space. Calculate shear
stress G_= G,,CosYy, — G, ,siny, on the surface of an opening. Taking into account (2.2) we find
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Substituting into (4.1) the limiting values of derivatives 6U3/8s, 6F*/8s at z —> CO* e I', calculated

with the help of representations (3.3) we will obtain the expression for amplitude of shear stress T
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Appearing in (4.2) function G.(C, G, ), Gg(C , €, ) are determined in (3.5).

Formula (4.2) permits to investigate the concentration of stresses in the space according to the
frequency of excitation, position and configuration of heterogenities. Here we also should mention
the circumstance concerning the behaviour of electroelastic quantities in the vicinity of the
inclusion. From the integral representations of the displacement amplitude in (3.3) we obtain
equality
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where the square brackets designate the jump of the corresponding quantity on L. From relations
(2.2), (2.7) and (2.9) it follows that
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9@ =IT, 1. (45)

Thuse, on the basis of (4.5) function q({) may be interpreted as intensity of contact forces of
interchange of the rigid inclusion and medium. From here it follows that for equilibrium of the
inclusion there should be performed equality

Jf q(€)ds = 0. (4.6)
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Condition (4.6) should be considered as an additional one when solving the system of singular



integral equations (3.4) in the class of functions, not restrained on tips L [5]. Due to (2.2), (2.9) and
(2.10) we have
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On the basis (4.7) we may conclude, that electric induction vector D is continuous in the area of a

N
cylinder, and electric stress vector E undergoes on the inclusion. If we consider a crack contour

(mathematical cut) as L, in case when the prescribed on its edges stresses are self-balancing, vector

- —
D undergoes a jump on L, and E is continuous [6].

5. Results of calculations. As an example consider a space with circular opening and linear
inclusions, orientated under angle 9 to axis Ox; (material is ceramics PZT-4 [8]). Parametric

equations of contour L has the form
Ref =gdcosy, Im{=gdsind+h (-1<8<1) (5.1)

Solution of system (3.4) together with additional condition (4.6) taking into account (5.1) was
carried out numerically by the method of quadratures [9, 10].
In Fig.2 there is shown the change of quantity p = [T /Z] at point of the contour of opening B =7 in

the function of normalized wave number y*R =yR 1+ k_ff, at 3 =0, h/R =3, g/R =15 (B is the polar
angle, R is the radius of the opening). The curve with number m is given for loading X, = Zsin(mf3)

(m = 1,2,3). The full lines conform to variant A, the dashed ones to variant B. It is seen that by

increasing parameters in peak values y*R dispeace to the right.

Concluding remarks. The represented approach to the solution of the stationary dynamic problem
of electroelasticity permits to investigate the influence of the inertial effect on the behaviour of the
components of the electric field in a piezoceramic space with tunnel heterogenities of a rather
arbitrary configuration. As it follow from Fig. 2 under dynamic loading quantity p may exceed its
static analogue almost by 2.5 times (curve 3).
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From the represented result of the calculations it follows that the behaviour of the electric and
mechanical quantities considerably depend on the frequency of the harmonic loading, mutual
position and configuration of heterogenities.
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Jupnudutinh hwpyht:

J. . bapazokac, M. JI. ®uiabIITHHCKAH

KoJsie6anus nbe30KepaMu4ecKoro NpocTpPaHCTBA ¢ TYHHEIbHbBIMU OTBEPCTHSIMU U 5KeCTKUMH
CTPHHIepaMHu (AHTHUILIOCKas 1edopmanus)

B cratpe MOCTpOEH aHANUTHYECKUN AMTOPUTM IS HUCCIEAOBAHHUS CONPSDKEHHBIX IOJIEH B
be30KepaMHUYECKON cpeze, OciaaOlIeHHOW HEOJHOPOAHOCTSMH THIIA TYHHEIBHBIX OTBEPCTHH W
KECTKUX JIMHEWHBIX CTPUHTEpOB. Bo30ykaeHne konebaHuii B cpele MPOUCXOINT 3a CUET rapMo-
HUYECKA H3MEHSIOIMNXCSA CO BPEMEHEM HANPSDKEHWM CABUTA, NEHCTBYIOIIMX Ha TOBEPXHOCTSX

MOJIOCTEH.



