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Introduction. Development of modern technologies in different fields of engineering stimulates
the application of the newest composite materials with anisotropic physical properties. Anisotropy
influences as the strength of constructive elements so the parameters of their fracture if the defects
crackwise. In order to investigate the inertial effect of the anisotropic bimorphs with defects we
should use Green's functions of the corresponding dynamic problems of the theory of elasticity. The
dynamic problems of the theory elasticity and electroelasticity for piecewise homogeneous bodies
were considered, for example, in [1-5]. Below by the method of integral transformations there is
constructed the fundamental solution for a composite anisotropic (orthotropic) space at its harmonic
with time loading by concentrated shear forces.

1. Statement of the Problem. In Cartesian coordinates x X, consider a composite anisotropic
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changing with time shear q(x;,x,) = Re(Q58(x;_8,.x, 3,)e of constant along axis X, intensity (tis

the time, o is the circular frequency, 8(x,y) is Dirac-delta function). It is assumed that the materials
of the composite space with respect to elastic properties are orthotropic.

Under the given conditions in a composite space there occur a steady wave process corresponding
to the state of antiplane deformation. The system of equations of the problem includes the following
relations [6]
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Here (1) is equation of motion, (2) are the equation of the medium state, Cij are the moduli of the
material elastisity; p is the material density, Srj is the Kronecker delta. Index "r" (r = 1,2) for all the
quantities referring to r-th half-space; x, >0 ifr=1and x, <0if r = 2.

The boundary of interphase x,, = 0 should satisfy the conditions of an ideal mechanical contact
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From (1), (2) we obtain Helmholtz equations for the displacement amplitude in a composite space
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Thus, the problem is reduced to the definition of the function from differential equations (4),
conjugation equations (3) and also from the conditions at infinity.

2. Construction of the fundamental solution for a composite anisotropic space To solve the problem
let us apply integral Fourier transform to equations (4)
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As a result we come to ordinary differential equation with respect to the spectral displacement
functions
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The general solutions of equations (6) providing the performance of radiation conditions [7] at
infinity may be represented as follows
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Constants A and B are determineted from conditions (3) on the boundary of conjugation of media
=0, which taking into account (2) in Fourier transformants have following form
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Proceeding from (7), (8) we obtain the expressions for the spectral function of the displacement
amplitude
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Moving to originals according to (5) we find
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The integral (10) prescribed on a semi-infinite interval according to the radiation condition will be
understood in the general meaning [7]
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Using the value of the integral [8]
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and the connection between functions of MacDonald and Hankel [9]
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we find
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Thus, the expression for the displacement amplitude when X2=0 may be represented in following

form
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where quantity I is fundamental solution for a homogeneous anisotropic space.
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Using equations of state (2) and formulas (10), (11) we determine the expressions for the
amplitudes of stresses in a composite anisotropic space. Taking into account the formulas of

differentation
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It should be noted here that for determination of quantities S( )1n (12) we used the procedure of
differentiation over the parameter under the sign of an lmproper integral which is possible in the



given case.

3. Numerical results. Let us investigate the distribution of elastic displacements and stresses in a
composite anisotropic space under the influence of concentrated shear forces depending on the
character of the material anisotropy and the frequency of the harmonic loading. The contour lines
of the absolute values of displacement in the area covering point (?;1,?;2) for various relations of the

material elastic moduli are represented in Figs 1-2.. In calculations it was assumed that the
beginning of the system of coordinates is in the center of the considered square area and §, =0, &,/a

= 0.1, p, = p, (a is the length of the square side). The lighter zones correspond to the maximum

values of the investigated quantity.

4. Concluding remarks. The represented results clearly illustrate the influence of the anisotropy of
the elastic properties of the materials of a composite orthotropic space and the frequency of
harmonic loading on the behaviour of the components of an elastic field at anisotropic deformation
in dynamics. The constructed fundamental solution may effectively be used for the calculation of
the boundary problems of the theory of elasticity for a composite anisotropic space, weakened by
heterogenities (cracks, openings, inclusions), by the method of boundary integral equations.
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Fig. 1. The contour lines of the displacement amplitude modulus in composite space
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Fig. 2. The contour lines of the displacement amplitude modulus in composite space
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Pumunnuy wthgnunpmy tupusm pjuatt hudup $mtmudbinnuyg
mbnuip (huljwhwppe nidnmiughu)

buntgpuy dtwthnjumpnititbph dbpnnny junnigduws b dntimpudbinug pusnud pununpyuy
wtthgnunpnyy wnwpwoénipjut hwdwp, npp Bupwpyuws k Eqpuyhtt gdtph pu dudwtiuyh pupwug-
pnud tkpnuptiunly thnthnpuynn JEtnpniugqws onpwithnn nidtph wqnbgniputin: Sknuithnjunipynii-
utiph b jupnultutph wpunwhwpnmpeniutbpp (dnpyjws Jhuwnwpusmpniuubpmud uinugdus tu
dmpth htnnbkgpuyutph wnkupny: Unwugjws tu pyuyhtt wpmyyniipubp b phpdws B nbnuithnpunt-
pmiuubph Yntunmpuyght gstpp:

. U. bapazokac, M. JI. ®UiabIITHHCKUI

DyHIaMEeHTAJIbHOE pelleHue JJsl COCTABHOI0 AHM30TPOIHOI0 MPOCTPAHCTBA
(anTHILIOCKAA nedopMalius)

B naHHOI cTaThe METOOM HMHTETPAIbHBIX MPeoOpa3oBaHUil MOCTPOEHO (PyHIaMEHTaIbHOE pe-
IICHHUE JJI1 COCTAaBHOTO aHU3O0TPOMHOIO MPU AHTUIUIOCKON NedopMalvy MpOCTPaHCTBA, TMOIBEPIKEH-
HOTO BO3I[€I>'ICTBI/IIO TapMOHHUYCCKHU HBMGHHIOIHGP'ICH BO BPCMCHH KaCAaTCJIbHLIX COCPCAOTOYCHHBLIX Ha
T'paHUYHBIX JIMHUAX CHIIL. BI)Ipa)KeHI/Iﬂ JJIA HepeMeHlCHI/Iﬁ n HaprDKeHI/Iﬁ B COIIPSAKCHHBIX IMOJYITPOC-
TpPaHCTBAX MOJy4eHbl B ¢popme uHTerpagoB dypee. [loayueHsl yncaeHHbIE pe3yIbTaThl U MPUBEIECHbI

KOHTYpPHOE JIMHUU TMepeMELICHUN.



