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The concept of the space elevator comprises a very long cable/ribbon (twenty times the Earth
radius) with one end fixed to the Earth and the other end free out in the space [1]. Based on this
concept we present here the mathematical study and formulation of mechanics problems of strength
and elastic stability arising in a simple elastic rod, with a view of a better understanding of this
physical phenomenon that could lead to a new knowledge in the field of space elevator studies.

Let us consider the equilibrium state of a very long elastic cable anchored on the Earth equatorial
point. The cable subject to both the action of Earth gravity inward force F;, defined by Newton

gravity law
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and centrifugal outward force F,, due to Earth daily spinning
2
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In (1), (2) y is a coordinate along cable length counted from Earth surface, p is the bulk density of
the cable material, R j = 6378 km is the Earth equatorial radius, g = 980 sm-sec 2 is the gravity force
acceleration on the Earth surface, ® = 2n/T is the circular spinning frequency of the Earth, T =
86146 sec is the period of the Earth spinning.

For cables anchored at the points of the Earth interstitial latitudes centrifugal outward force is
equal to

F,(y) = —po’(R +7),

where R is the radius of the corresponding latitude circumference, which changes from zero at the
pole to R, (at the equator).

When the cross-section area S(x) of the cable is the function of cable length (tapered cable), using
the dimensionless notations the equation determining the cable elastic stress 6(x) can be written as,
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Here the following dimensionless notations are used:

x=y/Ry L=JRy o= (02R0/gO ~ 1/288, /is the cable length.

Coefficient o characterizes the ratio of the gravity and centrifugal accelerations on the Earth
surface. For the Mars and the Moon this coefficient equals to

o, ~ 1/218, a, ~ 1/176.

Equation (3) is to be considered with the following boundary condition at free end

o(L)=0. 5)
When S(x)=const, the elastic stress is defined by the following function, satisfying to (3-5)

o(x) = PELR, 30 (%), (6)
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g (x) =
576(1 + L)(1 + x)

Since function 3’0 (x) may have only one zero in the interval x € [0,L], then from condition SJU (0)
=0,(1+L)2+L)=576, follows that for all L. > L,=225

E)'”D (x)>20, xe [O,LO]. (7)

Therefore, when the length of the cable is more than 10 = 143.325 km the cable is in a pure tension
state. For cables with L = LO’ 6(0) = 0 and mechanical tension stress reaches its maximum value Oy~
0.78pg R ;, at point x; ~ 5.602 (where g(xo) = 0), which corresponds to the Earth geosynchronous
orbit Yo =35.785 km. For cables with L > Ly we have the following condition SUPX[G(X)] 20

Let us note that the "limit" lengths for space elevator cable located on the Mars or the Moon
equators are the following:

Ly, =1938 (I, =65698) km



Ly, =17.21 = 29893) km

(o2

To minimize the cable maximum tension stress and its critical length we need to consider a
tapered cable, cross-section area of which is the function of cable length S = S(x).
Based on solution of equation (3) the stress function can be written as
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The solution (8) satisfies the boundary condition (5) at a free end.
Let us consider the cable with the following cross section area function
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where @ is a constant one.
Substituting (8) into (9) leads to
pg R L (10)
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From (10) follows that analogous to the case of the non tapered cable, o(x > 0), when L > Ly~

22.4; for L = LO, 6(0) = 0 and mechanical tension stress reaches to its maximum value at X, = 5.60

max o(x) =F|1-exp| - ——22 ||
i

On the other hand we have

076pg R (12)
max S, = S,exp ¢ _
o

From (12), (13) one can note that




N = max S*/SO (13)

where 1 is a tapering ratio of the cable, 5, = 0.76pg R, is the maximum stress of the of non tapered

cable.
On the cable ends we have

5.(0)=5.L) =S,

Based on formula (13) the dependence of the maximum stress value from tapering ratio is given in
Table 1. As it follows from Table 1. data, the thickening of the cable at the point of the Earth
geosynchronous orbit leads to the decreasing of the maximum tension stress. E.g. for a continuous
cable of a circular cross section the two times increase of the cable radius at the geosynchronous
orbit point leads to the two times decrease of the maximum stress.

Table 1
Dependence of Maximum Stress upon Tapered Ratio

1.1 16][25] 4 | 8 ]10] 20
[]l0.95]0.79][0-65][0.54]0.42][0.39][0.31

The above-mentioned results determine the projects of the cable design when the "limit" length
does not change, while the cable form permits decrease of maximum stress.

We can reach the decreasing both the "limit" length and the maximum stress by appropriate
choice of the cross section area function. Let us consider the cross section area functions as the
quadratic polynomial functions of the following type

[ ax bX2—|
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where a,b are arbitrary constants.

Substituting (14) into (8), we obtain the stress function depending upon parameters a,b. Since the
stress function expression is very cumbrous we do not present it here.

By means of numerical analysis of this expression the cable forms, namely, parameters a,b are
determined, providing the implementation of the following conditions

o(x) >0, maxoc(x) > min
X S

These numerical results for two considered cases are the following:



cable "limit" length L,=18, (b=-1.04,a=2.0), maxXG(X) = 0.61pg0R0,
cable "limit" length Ly,= 16.0, (b =-2.2,a = 4.23), maxxc(x) = 0.52pg0R0.
Let us now consider the cable with a "counterweight" of mass M, attached to its outward end. In

this case, we have the following boundary condition

Mg08(L)
o(L) = ———,
S0

[ (1+1) 1]
g(L) =| - | (15)
| 288 (1+L)? ]

The stress function satisfying the boundary condition (15) is the following

o(x) = ngRQ 7 (x)
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where M, = pLR S is the cable mass.
When the "counterweight" of mass M, is attached to the cable outward end, it is possible to consider

a design of uniformly tensioned cable when mechanical stress is constant along the cable length.
Such a design for a ponderable rod was considered first by S. Timoshenko [2].

Seeking in equation (1) solution c(x) = const we come to the following solution for the cable cross-
section area function.

L
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g(x) is the function defined by (4), S0 is the cable cross-section area at the outward end, where the

mass M, is attached. For a cable with "limit" length L= 22.4 function S(x) reaches to its maximum



value S at point x = 5.60.
The maximum value of the (17) can be written as

S.=Syexp(B), (18)
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On the other hand we have

o,= GOB_l, (19)

where o, = 0.76pg R is the maximum stress of the of non tapered cable. From (18), (19) follows
that decrease of the maximum stress leads to exponential increase of S,. E.g. when 3 = 2, we have S,

= 7.3980. For a continuous cable of a circular cross section, it means that the cable radius increase 2.7

times.
Table 2

"Limit" lengths and stress maximum values in depend of the "counterweight" mass

M/M,[ 100]| 50 |20 10 || 5 | 2 || 1

Ly 1[22.3]|22.07/|21.0/|20.48|(19.2||16.2|[13.2

Gy |(0.76] 0.74 (0.66| 0.63 (|0.53||13.2{|0.22

The "counterweight" decreases slightly the "limit" length and stress maximum values, when M >>
M, In the contrary, the "counterweight" decreases essentially the "limit" length and stress

maximum values, when the cable mass is compared with "counterweight" mass.
Let us now consider the elastic stability problem in the non tapered cable when its length is less
than "limit" length, L < L. In this case the compression stresses arise localized near cable base and

due to it, the cable may become unstable.
The cable elastic stability equation and appropriate boundary conditions can be written as

dw  af dw ]
A= Fy— |=0; (20)
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where the dimensionless function 5’"0 (x) is defined as in (6), EI is the bending rigidity of the cable
material, W(x) transverse displacement of the elastic cable, A = ngROBSO(EI)_l. Using notation y(x)

= [dW/dx], integrating equation (20) and taking into consideration the boundary conditions we
come to the following equation and boundary conditions

dzy
—0-2A ré‘“o(x)y:O, (22)
dx?
dy |
V=0 —| =0. (23)
dx | x=L

Equation (22) with conditions (23) is the self-adjoint boundary value problem determining

eigenvalues A. Since the function 3’0 (x) changes its sign in the interval x € [0,L], the eigenvalues
can be both positive and negative ones. The minimum positive eigenvalue A corresponds to the

critical load behind which the cable becomes unstable.

Let function 3’0 (x) change its sign from a negative value to a positive one at point x;,.

Then for minimum positive eigenvalue, A, the following inequality is valid

X,

| /plax



where function y(x) is any admissible function satisfying to the conditions y,(0) =y, (x,) = 0.
Let us consider the cable with L = 22.0. For this cable X = 0.04; and taking yo(x) =x(x — XO) we come
to the inequality A, < 6326. Based on this inequality we can postulate that for a rod with circular

cross section of radius r when r < I, the elastic rod under consideration is unstable, where

Therefore, the solution of the self-adjoint boundary value problem (22-23) even in this case (L =
22.0) results in the instability of the cable for any values of elastic and geometrical parameters
having practical and science forecasting meanings.

Conclusions.

Based on the solution of the one dimension equation of the elasticity theory qualitative and
quantitative results are obtained related to strength and stability problems of a space elevator
cable/ribbon. It is assumed that the cable is subjected to action of the Earth gravity inward force,
defined by Newton gravity law and the centrifugal outward force, due to the Earth's daily spinning.
The numerical data related to the strength characteristics of new modern materials such as carbon
nanotubs are omitted, since these data are in [1]. We confined ourselves to results related to the
tapered cable design strength problems. Based on the solution of a one dimension elasticity equation
solution of the tensile strength does not determine an absolute value of cable cross-section area. This
cross section value parameter may be determined while considering the two dimensional problems
or dynamics problems, especially elastic wave propagation along a tensioned cable.

On the other hand, there is no doubt that the future objects of the investigation should be
constructions of elastic closed shells (pipes) type, which are of interest from an applied point of
view. For such constructions, the new mechanical problems should be considered, which take into
account circular, transversal stresses and displacements arising in the shells. Among these problems
we can list the dynamic interaction of closed shells subject to external media, including
electromagnetic, temperature and atmosphere fields actions.
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Shtqbpwljwub yEptjuyh dnyuth twhiugsh punph dwupt

Shtgipuut Jtpkjuljh hwujugmpmitip hp Uk wupnibwind b pwwn Epljup
&nyut (duyuwyku), nph vh duypt wmquan k, hul Ujntu suyptt wmdpwlgws k Gpyphte

Ujn hwulugnipinithg Bjukng tkpjujugdws tu yupgq, wpwdquijub dnnh wd-
poipjut b juyniunipjut dbkjpwthugh punhputph dbwyipynudp b dwpbdwunhjujut
hEwnwgnunudp:

Uyt byl niuth wybih juy hwuljubtiug poit $hqhuljut Eplnypep, npu k) Ypkph
nhbkqbpujut &nywth ntunidtwuhpdw piuquyunnid unp ghwnbihph:

Axanemuk C. A. AMOapuymsH, M. B. Beayo6eksn, K. b. Kazapsan, B. Il. 'nynn

K 3agade npoeKTHpPOBAHUA TPOCA KOCMHYECKOro JudTa

KoHuenmust kocMuueckoro Ju@ra COACPKUT B cede JUIMHHBIA TpOC (CTEpXkKEeHb IMHOU
HOpsiIKa ABaJLATH PaguycoB 3eMJIH), OJUH KOHELl KOTOPOro 3aKperuieH Ha 3emiie, ApYroi KOHeI
cBoboaeH B kocMoce [1]. C nenbio gyyIinero NOHUMaHus 3TOH KOHLENIMH B paboTe MpeiCcTaBlIeHb
MaTeMaTH4yecKasl MOCTaHOBKAa U (OPMYJIHPOBKA MPOOJIEM HNPOYHOCTH U YyCTOWYMBOCTH YNPYIOro
CTEpIKHSI, HAXOISIIErocs MO IeHCTBUEM CHJIBI TPAaBUTAIIMU 3€MJIH M LIEHTPOCTPEMUTEILHON CHIIBI,

00yCIIOBJICHHOW CYTOYHBIM BpaIleHUEM 3eMJIH.



