А.Р. Хачатрян

О непрерывности некоторых многозначных отображений

(Представлено чл.- кор. НАН РА Г. Г. Геворкяном 13/II 2004)

Непрерывные многозначные отображения естественным образом возникают при изучении вопросов корректности и стабильности в параметризованных задачах оптимизации [1-4]. Известно[1,5], что такие отображения с выпуклыми замкнутыми значениями имеют непрерывные однозначные сечения.

В настоящей работе (при довольно естественных предположениях) показано, что при $\epsilon > 0$

многозначное отображение $a_{\epsilon}(\theta) = \{ x \in a(\theta)/f(x,\theta) \le \inf_{x \in a(\theta)} f(x,\theta) + \epsilon \}$ множества ϵ -оптимальных решений [3,4] является непрерывным многозначным отображением с выпуклыми образами и поэтому имеет непрерывные сечения. Этот результат является основным инструментом в наших исследованиях.

В работе установлены следующие результаты:

- а) Методом проекции градиентов строится функциональная последовательность и при некоторых условиях доказывается, что расстояние этой последовательности до множества $\mathbf{a}_{\epsilon}(\theta)$ равномерно по θ стремится к нулю.
- б) Вводится понятие интеграла Римана для многозначного отображения и показывается, что замыкание интеграла Римана совпадает с интегралом Лебега [6]. Этот результат используется при вычислении є-субдифференциала целевой функции в стохастическом программировании.
- в) В теории непрерывых игр показано, что если множества стратегий игроков являются непрерывными многозначными отображения с выпуклыми образами, то игроки могут использовать только непрерывные решающие правила, которые описывают устойчивое поведение игроков [7].
- г) Рассматривается задача Коши для дифференциального включения, зависящего от параметров. При некоторых условиях доказано, что множество решений этой задачи непрерывно зависит от параметров.
- д) Показано, что оператор проецирования на выпуклый компакт в банаховом пространстве есть непрерывное многозначное отображение.
- 1. Введение. Пусть X,Y метрические пространства. Под многозначным отображением (м.о.) X в Y понимается отображение $a: X \to 2^Y$ пространства X в совокупность всех подмножеств 2^Y пространства Y. Напомним некоторые определения из [8].

Определение 1. *М.о.* $a: X \to 2^Y$ называется полунепрерывным сверху (п.н.св.) в точке $x_0 \in X$, если из того, что $x_j \to x_0$, $y_j \in a(x_j)$ и $y_j \to y_0$, следует, что $y_0 \in a(x_0)$.

Определение 2. *М.о.* а : $X \to 2^Y$ называется полунепрерывным снизу (п.н.сн.) в точке $x_0 \in X$, если для любого $y_0 \in a(x_0)$ и любой последовательности $\{x_j\}$, $x_j \to x_0$, найдутся такие $y_j \in a(x_j)$, что $y_i \to y_0$.

Определение 3. Отображение $a: X \to 2^Y$ называется непрерывным, если оно одновременно полунепрерывно и сверху и снизу в любой точке $x \in X$.

Определение 4. Сечение для $a: X \to 2^Y$ определяется как однозначное отображение $y(\cdot): X \to Y$ такое, что $y(x) \in a(x)$ для всех $x \in X$.

Теорема 1. Пусть $a(\theta)$ непрерывное м.о. с выпуклыми компактными значениями на компактном множестве $E \subset R^p$. Пусть функция $f(x, \theta)$ непрерывна по θ и выпукла по $x \in R^n$.

$$\textit{Положим} \, V_a(\theta) = \min_{x \in a(\theta)} f(x,\,\theta) \; ; \, a_\epsilon(\theta) = \{x \in a(\theta) \ / \ f(x,\theta) \leq V_a(\theta) + \epsilon\}. \; \textit{Тогда м.о.} \; a_\epsilon(\theta) \; \textit{непрерывно.}$$

2. Интегралы многозначного отображения. Пусть (E,Σ,P) - вероятностное пространство, где $E\subset \mathbb{R}^p$ - компакт.

Определение 5. Интегралом Римана м.о. $G: E \to 2^{R^m}$ называется множество интегралов от всевозможных непрерывных сечений отображения G:

$$(R)\int\limits_{E}G(\theta)P(d\theta)=\{\int\limits_{E}g(\theta)P(d\theta)/g(\theta)\in G(\theta)\}\equiv I_{R}.$$

Определение 6[6]. Интегралом Лебега м.о. $G: E \to 2^{R^m}$ называется множество интегралов от всевозможных интегрируемых сечений отображения G. Обозначим это множество через I_L .

Теорема 2. Пусть м.о. $G(x,\theta): R^n \times E \to 2^{R^m}$ непрерывно; множества $G(x,\theta)$ - непустые

выпуклые компакты. Пусть $a(x) \equiv (R) \int\limits_E G(x,\theta) P(d\theta)$. Тогда м.о. a(x) непрерывно.

Теорема 3. Пусть м.о. $G: E \to 2^{R^m}$ непрерывно и для любого $\theta \in E$ множество $G(\theta)$ выпукло, замкнуто и компактно. Тогда имеет место равенство $\bar{\mathbb{I}}_R = \mathbb{I}_L$, где $\bar{\mathbb{I}}_R$ - замыкание множества \mathbb{I}_R .

Пусть функция $f(x,\theta)$ определена на $R^n \times E$. При $\epsilon > 0$ определим ϵ - субдифференциальное отображение по x для функции $f(x,\theta)$ следующим образом:

$$\partial_x^{\ \epsilon} f(x,\theta) \equiv \{\ \nu \in \, R^n/f(y,\theta) - f(x,\theta) \geq <\nu, \, y-x> -\epsilon, \forall \, x \in \, R^n \}.$$

Рассмотрим теперь задачу стохастического программирования:

$$F(x) \equiv \int_{E} f(x,\theta)P(d\theta) \to \min,$$

где $f(x,\theta)$ сильно выпукла по x равномерно относительно $\theta \in E$ и непрерывна по θ при фиксированом $x \in R^n$. Имеет место следующий результат:

Теорема 4. Пусть $\mathbf{x}_0 \in \mathbf{R}^n$. Тогда для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что $\partial F(\mathbf{x}_0) + \mathbf{B}_\delta(0) \subseteq \mathbf{I}_L$ $\subseteq \partial_\varepsilon F(\mathbf{x}_0)$, где \mathbf{I}_L интеграл Лебега от многозначного отображения $\partial_\mathbf{x}^\varepsilon f(\mathbf{x}_0,\cdot) : \mathbf{E} \to \mathbf{2}^{\mathbf{R}^n}; \ \mathbf{B}_\varepsilon(0)$ - замкнутый шар радиуса ε с центром в точке нуль.

3. ε - оптимальные решения в параметрических задачах оптимизации. Пусть $f(x,\theta)$ удовлетворяет всем условиям теоремы 1 и существует производная $f_x'(x,\theta)$, непрерывная относительно x и θ . Рассмотрим теперь м.о. $a_\varepsilon^{M}(\theta) = \{x \in M/f(x,\theta) \le V(\theta) + \varepsilon\}$, где $V(\theta) = \inf_{x \in M} f(x,\theta)$.

Теорема 5. Пусть $M \subset R^n$ - выпуклый компакт и функцинаольная последовательность $\{x_j(\theta)\}$ строится следующими рекуррентными соотношениями:

$$x_1(\theta) \equiv x_0 \in M; \qquad x_{j+1}(\theta) = \Pi_M \left(x_j(\theta) - \lambda_j f'_x(x_j(\theta), \theta) \right) (j = 1, 2, \ldots).$$

rде $\sum_{j=1}^{\infty} \lambda_j = +\infty$, $\lambda_j > 0$, $\lambda_j \downarrow 0$ и $\Pi_M(x)$ - проекция точки x на множество M.

 ${ {\it Тогда}}\ {\it для}\ {\it любого}\ \epsilon > 0,\ \rho(x_{j}(\theta), a^{M}_{\ \epsilon}(\theta)) o 0\ {\it при}\ j o \infty\ {\it равномерно}\ {\it no}\ \theta \in E.$

4. Задача о проекции. Пусть M - выпуклый компакт из банахова пространства X и $\theta \in X$. Рассмотрим задачу проецирования:

$$\phi(x) \equiv ||\theta - x|| \to min \; , \qquad x \in M.$$

Пусть $V(\theta) = \min_{\mathbf{x} \in M} ||\theta - \mathbf{x}||$. Положим $\mathbf{a}(\theta) \equiv \{\mathbf{x} \in M \ / \ ||\theta - \mathbf{x}|| \le V(\theta)\}$.

Теорема 6. *М.о.* $a(\theta)$ *непрерывно.*

5. Приложение к теории игр и к теории дифференциальных включений.

Теорема 7. Пусть M - выпуклый компакт из R^n и $a(x): M \to 2^{R^m}$ - непрерывное м.о. с выпуклыми компактными значениями; f(x,y) - непрерывная функция, вогнутая относительно y

при фиксированном $x \in M$. Тогда имеет место равенство $v = \inf_{x \in M} \sup_{y \in a(x)} f(x,y) = \sup_{C_N \in \mathfrak{I}} \inf_{x \in M} f(x,C_N(x)),$ где \mathfrak{I} - множество всех непрерывных сечений м.о. а.

Рассмотрим дифференциальное включение

$$\frac{dx}{dt} \in a(x,\theta) \tag{1}$$

с начальным условием

$$\mathbf{x}(\mathbf{a}) = \mathbf{x}_0. \tag{2}$$

Решением этой задачи называется всякая функция $x(t,\theta):[a,b]\times E\to R^m$, которая непрерывно дифференцируема по t на некотором отрезке [a,b]; для всех $t\in[a,b]$ выполнено соотношение (1) и $x(a,\theta)=x_0$. Множество всех решений задачи (1)-(2) обозначим через $\mathfrak{I}(\theta)$.

Теорема 8. Пусть выполнены следующие условия:

1) м.о. $a(\cdot,\theta): R^n \to 2^{R^m}$ удовлетворяет условию Липшица с константой L > 0 в области $\Omega \subseteq R^n$ равномерно относительно $\theta \in E$, где E - некоторый компакт из R^p , т.е. $a(x_1,\theta) \subseteq a(x_2,\theta) + L||x_1 - x_2||B_1(0), \, \forall x_1, x_2 \in \Omega, \, \forall \theta \in E;$

- 2) при фиксированом $x \in \Omega$ м.о. $a(x,\cdot): E \to 2^{R^m}$ непрерывно;
- 3) множества $a(x,\theta)$ выпуклые компакты. Тогда м.о. $\Im(\theta)$ п.н.сн. на E.

Ереванский государственный университет

Литература

- 1. *Tyrrel Rockafellar R., Roger J-B.* Wets Variational Analysis. Springer Verlag. Berlin Heidelberg. 1998. 733 p.
 - 2. Хачатрян Р. А. Изв. НАН Армении. Математика. 2002. 37. N2. C. 65 -76.
 - 3. *Хачатрян А. Р., Хачатрян Р. А.* Ученые записки ЕГУ. 2003. N2. C. 3-13.
 - 4. Хачатрян Р. А., Аветисян Р.А., Хачатрян А. Р. Изв. НАН Армении. 2003. N1. C. 69-82.
 - 5. Michael E. Ann. Math. 1956. V.63. N2. P. 361-382.
- 6. *Михалевич В. С., Гупал А. М., Норкин В. И.* Методы невыпуклой оптимизации. М. Наука. 1987. 279 с.
 - 7. Обен Ж. П., Экланд И. Прикладной нелинейный анализ. М. Мир. 1988. 510 с.
 - 8. Демьянов В. Ф., Васильев Л. В. Недифференцируемая оптимизация. М. Наука. 1981. 384 с.

Ա. Ռ. խաչատրյան

Որոշ բազմարժեք արտապատկերումների անընդհատության մասին

Բավականաչափ ընդհանուր պայմանների դեպքում ցույց է տրվում, որ $a_{\varepsilon}(\theta) = \{x \in a(\theta)/f(x,\theta) \leq \inf_{x \in a(\theta)} f(x,\theta) + \varepsilon\}$ բազմարժեք արտապատկերումը հանդիսանում է ուռուցիկ պատկերներով անընդհատ արտապատկերում։ Օգտվելով այս փաստից, ստացվել են հետևյալ արդյունքները։

- ա) Կառուցվում է անընդհատ անդամներով ֆունկցիոնալ հաջորդականություն, որը ըստ θ պարամետրի հավասարաչափ ձգտում է $a_{\varepsilon}(\theta)$ բազմությանը։
- բ) Սահմանվում է Ռիմանի ինտեգրալի գաղափարը բազմարժեք արտապատկերման համար և ցույց տրվում, որ այդ ինտեգրալի փակումը համընկնում է Հեբեգի ինտեգրալի հետ։
- գ) Ցույց է տրվում, որ պրոեկտման օպերատորը ուռուցիկ կոմպակտի վրա բանախյան տարածության մեջ հանդիսանում է անընդհատ բազմարժեք արտապատկերում։