ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ՀԱՅԱՍՏԱՆԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ наук АРМЕНИИ NATIONAL ACADEMY SCIENCES O F O F ARMENIA <u>ДОКЛАДЫ</u> <u> ԶԵԿՈՒՅՑՆԵՐ</u> REPORTS 102 2002 № 4

МАТЕМАТИКА

УДК 539.1

В.И. Гаврилов, академик В.С. Захарян, АВ. Субботин

Критерии компактности в пространствах $h_{max}^p, p>0$

(Представлено 31/Х 2001)

Символом U обозначим открытый единичный круг |z| < 1 на комплексной плоскости C, а символом T - его границу |z| = 1. Для произвольной комплексной функции U(r), определенной в U, величину

$$\sup_{0 \le r \le 1} \left| U(re^{i\theta}) \right| = (Mu) \left(e^{i\theta} \right)$$

называют радиальной максимальной функцией

Если функция U(z) непрерывна в круге U, то для произвольной p>0 обозначим

$$||U_p|| = \sup_{0 \le r < 1} \left[\int_{-\pi}^{\pi} |U(re^{i\theta})|^p \frac{d\theta}{2\pi} \right]^{\frac{1}{p}},$$
 (1)

$$||U_p||^* = \left[\int_{-\pi}^{\pi} (Mu)^p (e^{i\theta}) \frac{d\theta}{2\pi}\right]^{\frac{1}{p}}.$$
 (2)

Гармоническую в круге U функцию U(z) относят к малому классу Харди h^p , p>0, если $||U_n|| < \infty$. Аналитическую в круге U функцию f(z) относят к большому классу Харди H^p , p>0, если $\|f_p\|<\infty$, а последнее равносильно тому, что $U,V\in h^p$, p>0, где f(z)=U(z)+1 $V(z), z \in U \text{ (cm.[1, §1.1])}.$

Определение 1. Гармоническую функцию U(z), определенную в круге U, отнесем к классу h^p_{max} , p>0, если $\|U_p\|_p^*<+\infty$, так что вложение $h^p_{max}\subseteq h^p$ справедливо для всех p>0. Определение 2. Для любой функции $U\in h^p_{max}$, p>0, функции U_r , $0\leq r<1$, определим

формулой

$$U_r(z) = U(rz), z \in \bigcup, 0 \le r < 1.$$

Отметим, что настоящая работа тесно связана со статьей [2] авторов и может считаться ее продолжением.

Определяемая формулой (2) характеристика $\|\cdot\|_p^*$ является абсолютно однородной, так что понятие ограниченности подмножества пространства $h_{max}^p, p>0$, в линейно-топологическом смысле эквивалентно понятию ограниченности в метрике ρ_p^* . Свойство же полной ограниченности множества в $h_{max}^p, p>0$, описывается следующей теоремой.

Теорема 1. Для того, чтобы множество $L \subseteq h^p_{max} h^p > 0$, было вполне ограниченным относительно метрики ρ_p^* , необходимо и достаточно выполнения следующих двух условий:

- а) L ограничено в метрике ρ_p^* ;
- б) функции u_r , $0 \le r < 1$, сходятся к функции и при $r \to 1-$ относительно метрики ρ_p^* равномерно по $u \in L$.

Доказательство. Необходимость. Ограниченность вполне ограниченного множества есть общий факт теории метрических пространств, так что условие а) необходимо.

Чтобы установить необходимость условия б), выберем любое $\varepsilon>0$ и найдем, согласно условию полной ограниченности множества L, конечную $\varepsilon/3$ -сеть для L, т.е. такое конечное множество $K=\{u_1,\ldots,u_n\}\subseteq L$, что для любой функции $u\in L$ найдется $u_k\in K, 1\leq k\leq N$, такое что $\rho_p^*(u_k,u)\leq \varepsilon/3$. По теореме 4 [2] ддя этого $\varepsilon>0$ найдется также число $r_0\in [0,1)$, такое что неравенство $\rho_p^*((u_k)_r,u_k)\leq \varepsilon/3$ выполнено при $r\in [r_0,1)$ для всех $k,1\leq k\leq N$, где функции $(u_k)_r,0\leq r<1$, определяются формулой $(u_k)_r(z)=u_k(rz),z\in U$. C другой стороны, в силу оценок $\|u_r\|_p^*\leq \|u\|_p^*$, $u\in h_{max}^p$, p>0, $0\leq r<1$, и неравенства треугольника для метрики ρ_p^* , имеем $\rho_p^*(u_r,u)\leq \rho_p^*(u_r,(u_k)_r)+\rho_p^*(u_k)_r,u_k+\rho_p^*(u_k,u)\leq 2\rho_p^*(u_k,u)+\rho_p^*(u_k)_r,u_k$) для любой u и любого $1\leq k\leq N$. Если номер k подобран так, что $\rho_p^*(u_k,u)\leq \varepsilon/3$, и если $r\in [r_0,1)$, то, по доказанному выше, получаем оценку $\rho_p^*(u_r,u)\leq 2\varepsilon/3+\varepsilon/3=\varepsilon$ для всех $u\in L$ и любого $r\in [r_0;1)$;; т.е. $u_r\to u$ в метрике ρ_p^* при $r\to 1$ равномерно по $u\in L$.

Достаточность. Предположим, что для множества $L\subseteq h_{max}^p, p>0$, выполнены условия а) и б) теоремы. Тогда, согласно теореме 1[2], ограниченным в H^p будет множество функций $\tilde{L}=\{f\in H^p; \operatorname{Re} f\in L, \operatorname{Im} f(0)=0\}$ и, в силу неравенства 10 [2], семейство \tilde{L} равномерно ограничено на компактах круга U. В силу критерия Монтеля, множество \tilde{L} относительно компактно, а значит, и вполне ограничено в метрике равномерной сходимости на компактах из U. Задавшись произвольным $\varepsilon>0$, найдем, согласно условию б), такое $r_0\in [0,1)$, что для всех $u\in L$ выполнено $\rho_p^*(u_{r_0},u)\leq \varepsilon/2$ (где $u_{r_0}(z)=u(r_0z),z\in U$). Так как семейство \tilde{L} вполне ограничено в метрике равномерной сходимости на компактах в U, то для него существует конечная $(\varepsilon/2)^{1/a_p}$ -сеть $(\alpha_p=\min(1,p))$ в норме

$$||f||_{\infty,r_0} = \max_{|z| \le r_0} |f(z)|;$$

т.е. существует такой набор функций $\{f_1, \cdots, f_N\} \subseteq \tilde{L}$, что для любой функции $f \in \tilde{L}$ найдется номер $k, 1 \le k \le N$, такой что $\|f - f_k\|_{\infty, r_0} \le (\varepsilon/2)^{1/\alpha_p}$.

Итак, пусть $u \in L$. Найдем для нее такую функцию $f \in \tilde{L}$, что Re f = u, и выберем номер $1 \le k \le N$ так, чтобы было выполнено $\|f - f_k\|_{\infty,r_0} \le (\varepsilon/2)^{1/\alpha_p}$. Тогда $\rho_p^*(u,(\operatorname{Re} f_k)_{r_0}) \le \rho_p^*(u,u_{r_0}) + \rho_p^*(u_{r_0},(\operatorname{Re} f_k)_{r_0}) \le \rho_p^*(u,u_{r_0}) + \|f_k - f\|_{\infty,r_0}^{\alpha_p} \le \varepsilon/2 + \varepsilon/2 = \varepsilon$, т.е. показано, что функции $u_k(\operatorname{Re} f_k)_{r_0}$), $1 \le k \le N$, образуют ε -сеть множества L в метрике ρ_p^* . Так как конечная ε -сеть построена для любого $\varepsilon > 0$, то множество L вполне ограничено.

Следствие 1. Утверждение теоремы 4 [2] имеет место равномерно на любом компактном множестве функций из h_{max}^p , p > 0.

Критерий компактности в пространствах h^p_{max} , p > 0, можно сформулировать и в другой форме. Напомним, что условие полной ограниченности множества в полном метрическом пространстве равносильно его относительной компактности (т.е. компактности его замыкания).

Теорема 2. Множество L вполне ограничено в пространстве $h_{max}^p, p > 0$, тогда и только тогда, когда

- а) L ограничено в метрике ρ_p^* ;
- б) интегралы семейства функций $\{(Mu)^p(e)^{i\theta}, \theta \in [-\pi; \pi]\}_{u \in L}$ равностепенно абсолютно непрерывны на $[-\pi; \pi]\}$; т. е. для любого $\varepsilon > 0$ существует такое $\delta > 0$, что

$$\int (Mu)^p \left(e^{i\theta}\right) \frac{d\theta}{2\pi} < \varepsilon, u \in L,$$

для любого множества e на $[-\pi;\pi]$ лебеговой меры меньше $\delta;u$

в) для любой последовательности $(u_n)\subseteq L$ существует подпоследовательность $(u_{n_k})\subseteq (u_n)$, для которой $M(u_{n_k}-u_{n_m})\to 0$ при $k,m\to\infty$ по мере.

Доказательство. Необходимость условия а) проверяется так же, как в теореме 1.

Чтобы показать необходимость условия б), предположим, напротив, что интегралы семейства функций $\{(Mu)^p(e)^{i\theta} - \pi \leq \theta \leq \pi\}_{u \in L}$ не являются равностепенно абсолютно непрерывными на $[-\pi;\pi]$. Тогда найдется некоторая последовательность функций $(Mu_n)^n, (u_n) \subseteq L$ этого семейства такая, что она сама и любая ее подпоследовательность не имеют равностепенно абсолютно непрерывных интегралов. Согласно условию полной ограниченности множества L, существует подпоследовательность (u_{n_k}) последовательности (u_n) , сходящаяся к некоторой функции $u \in h^p_{max}$ в метрике ρ_p^* . Отсюда, в силу неравенства Чебышева,

$$meas\Big\{M(u_{n_k}-u)\geq \varepsilon\Big\}\leq \frac{1}{\varepsilon^p}\int_{-\pi}^{\pi}\Big[M(u_{n_k}-u)\Big]^p(e^{\theta})d\theta=\frac{2\pi}{\varepsilon^p}\Big(||u_{n_k}-u||_p^*\Big)^{p/\alpha_p}\to 0,$$

при $k \to \infty$ для любого $\varepsilon > 0$, так что последовательность $(Mu_{n_k})(e)^{i\theta}$ сходится к $Mu(e)^{i\theta}$ при $k \to \infty$ по мере на отрезке $[-\pi;\pi]$. Выбирая, если это необходимо, подпоследовательность, можем считать, что

$$\lim_{k \to \infty} M u_{n_k}(e)^{i\theta} = M u(e)^{i\theta}$$

почти всюду на $[-\pi;\pi]$. С другой стороны, из сходимости (u_{n_k}) к u при $k\to\infty$ в метрике ρ_p^* и свойства непрерывности характеристики $\|\cdot\|_p^*$ относительно метрики ρ_p^* имеем

$$\lim_{k \to \infty} \|u_{n_k}\|_p^* = \|u\|_p^*, \text{ r. e.}$$

$$\lim_{k \to \infty} \int_{-\pi}^{\pi} (Mu_{n_k})^p (e^{i\theta}) \frac{d\theta}{2\pi} = \int_{-\pi}^{\pi} (Mu)^p (e^{i\theta}) \frac{d\theta}{2\pi}.$$
(3)

В соответствии с общей предельной теоремой (см., например, [3, Введение]), утверждение (3) имеет место тогда и только тогда, когда последовательность $\left(Mu_{n_k}\right)^p$ обладает равносте-

пенно абсолютно непрерывными интегралами, что противоречит выбору последовательности (u_n) .

Наконец, условие в) было уже проверено в процессе доказательства необходимости условия б) (см. использованное выше неравенство Чебышева).

Достаточность. Чтобы проверить полную ограниченность множества в метрическом пространстве, достаточно показать, что из любой последовательности его элементов можно выделить фундаментальную подпоследовательность.

Итак, пусть (u_n) - некоторая последовательность функций множества L. Используя свойство в), выделим из нее такую подпоследовательность (u_{n_k}) , чтобы $M(u_{n_k}-u_{n_m})\to 0$ при $k,m\to\infty$ по мере на множестве T. Переходя, если необходимо, к подпоследовательности, можем считать, что $M(u_{n_k}-u_{n_m})\to 0$ при $k,m\to\infty$ почти всюду на множестве T. В силу элементарного неравенства $(a+b)^p\leq 2^p(a^p+b^p)$, $a,b,p\geq 0$, имеем оценку $[M(u_{n_k}-u_{n_m})]^p\leq 2^p[(Mu_{n_k})^p+(Mu_{n_m})^p]$, из которой, согласно условию б), заключаем, что двойная последовательность $(M(u_{n_k}-u_{n_m})^p)$ функций на $[-\pi;\pi]$ обладает равностепенно абсолютно непрерывными интегралами. В силу предельной теоремы ([3, Введение]}, имеем

$$\int_{-\pi}^{\pi} [M(u_{n_k} - u_{n_m})]^p(e^{i\theta}) \frac{d\theta}{2\pi} \to 0 \text{ при } k, m \to \infty$$

или $\|u_{n_k}-u_{n_m}\|_p \to 0$ при $k,m\to\infty$, что и означает фундаментальность последовательности (u_{n_k}) в метрике ρ_p^* .

Замечание 1. В приведенном доказательстве достаточности не использовано условие а), но оно вытекает из условия б).

Замечание 2. При p > 1, в силу теоремы М. Рисса и максимальной теоремы Харди -Литлвуда, нормы $\|\cdot\|_p$ и $\|\cdot\|_p^*$ эквивалентны на $h^p = h_{max}^p$. Поэтому понятия полной ограниченности в порожденных ими топологиях равносильны. Кроме того, пространства h^p при p>1изометрически изоморфны пространствам L^p на отрезке $[-\pi;\pi]$ с нормированной мерой Лебега. Принимая во внимание критерий полной ограниченности в классах L^p (см. [3, гл. III, § 3, теорема 6]), получим, что множество L вполне ограничено в h^p_{max} , p>1, если, и только если, оно ограничено, интегралы семейства функций $\{\left|u^*(e^{i\theta})\right|^p$, $\theta\in[-\pi;\pi]\}_{u\in L}$ где u^* - радиальные пределы функций $u \in L$, равностепенно абсолютно непрерывны на $[-\pi;\pi]$, а семейство функций $\left\{u^*\left(e^{i\theta}\right)^p,\;\theta\in[-\pi;\pi]\right\}_{u\in L}$ - относительно компактно в топологии сходимости по мере на отрезке $[-\pi;\pi]$. Отметим, что в этом критерии, по сравнению с теоремой 2, ослаблены условия б) и в). Это означает, что из условия равностепенной абсолютной непрерывности интегралов рых степеней радиальных пределов функций некоторого множества функций класса h^p , p>1, и относительной компактности этих радиальных пределов по мере следуют более сильные свойства равностепенной абсолютной непрерывности интегралов p-ых степеней радиальных (и даже угловых, если теорему 2 сформулировать в терминах угловых максимальных функций) максимальных функций этого множества и относительной компактности по мере функций этого множества, равномерной на радиусах!

С другой стороны, этот "ослабленный" критерий компактности не может быть распространен на случай $0 , как показывает пример последовательности <math>u_n(z) = p(z^n)$, $z \in U$, где p(z) - функция класса h_1 заданная формулой

$$p(z) = \frac{1 - |z|^2}{|1 - z|^2}, \ |z| < 1 \tag{4}$$

С последним замечанием созвучно наблюдение, что известная теорема Хинчина – Островского (см. [3, гл. II, §7, п. 1]) не может быть прямо перенесена со случая аналитических функций класса Островского - Неванлинны N^1 на гармонические функции класса h^1 (в чем убеждает простой пример последовательности $u_n(z) = (-1)^n p(z)$, $z \in U$, где функция p(z) определена формулой (4)).

Теорема 2, однако, позволяет получить некий аналог этой теоремы.

Теорема 3. Пусть (u_n) - последовательность гармонических в круге U функций класса h^1 , ограниченная в нуле, удовлетворяющая условию

$$\int_{-\pi}^{\pi} u_n^+(re^{i\theta}) \frac{d\theta}{2\pi} \le C, \ 0 \le r < 1 \tag{5}$$

для некоторой конечной постоянной $C \geq 0$ и сходящаяся при $n \to \infty$ равномерно почти на каждом радиусе круга U. Тогда $n \to \infty$ функции u_n сходятся равномерно на компактах в U к некоторой гармонической функции u, также принадлежащей классу h^1 , причем сходимость имеет место также u в метрике любого пространства h^p_{max} , 0

Доказательство. Нетрудно видеть, что первое условие теоремы эквивалентно условию $\sup \|u_n\|_1 < +\infty.$

Действительно, интегралы

$$\int_{\pi}^{-\pi} u_n(re^{i\theta}) \frac{d\theta}{2\pi} = u_n(0), \ 0 \le r < 1$$

по свойству среднего значения гармонических функций и условию теоремы ограничены по n и $0 \le r < 1$, следовательно, ограничены и интегралы

$$\int_{-\pi}^{\pi} |u_n(re^{i\theta})| \frac{d\theta}{2\pi} = 2 \int_{-\pi}^{\pi} u_n^+(re^{i\theta}) \frac{d\theta}{2\pi} - \int_{-\pi}^{\pi} u_n(re^{i\theta}) \frac{d\theta}{2\pi}, \ 0 \le r < 1.$$

Переходя к точной верхней грани по r, получаем искомую ограниченность характеристик $\|u_n\|_1$, $n \in \mathbb{N}$.

Для любого $0 , согласно теореме 2 [2], ограничены и характеристики <math>\|u_n\|_p^*$ $n \in N$, т. е. выполнено условие а) теоремы 2. С помощью неравенства Гельдера нетрудно показать, что из ограниченности интегралов некоторого семейства функций в большей степени следует равностепенная абсолютная непрерывность интегралов этого семейства в меньшей степени, так что для последовательности (u_n) выполнено и второе условие б) теоремы 2. Наконец, условие в) теоремы 2 утверждается вторым условием доказываемой теоремы. По теореме 2, последовательность (u_n) относительно компактна в пространстве h_{max}^p , 0 . Выделим из нее

подпоследовательность (u_{n_k}) , сходящуюся в метрике ρ_p^* к некоторой функции $u \in h_{max}^p$. Согласно теореме 3 [2], эта сходимость равномерна на любом компакте из U. Полагая в (5) $n = n_k$ и устремляя $k \to \infty$, при фиксированном $0 \le r < 1$, имеем

$$\int_{-\pi}^{\pi} u_n^+(re^{i\theta}) \frac{d\theta}{2\pi} \le C, \ 0 \le r < 1,$$

И

$$u(0) = \lim_{k \to \infty} u_{n_k}(0)$$

- конечная величина. Как и в начале даказательства, отсюда следует, что функция и принадлежит пространству h^1 .

Осталось показать, что вся последовательность (u_n) сходится к этой функции u.

Действительно, предположим, что некоторая подпоследовательность $(u_{n'_m})$ последовательности (u_n) обладает свойством $\rho_p^*(u_{n'_m},u) \geq \varepsilon$ для некоторого $\varepsilon > 0$. Выделим, в силу доказанного свойства относительной компактности (u_n) , подпоследовательность $(u_{n''_i}) \subseteq (u_{n'_m})$, сходящуюся к некоторой функции v пространства h^p_{max} в метрике ρ_p^* . Поскольку, согласно условию теоремы, $M(u_{n_k}-u_{n''_i}) \to \infty$ при $k,l \to \infty$ почти всюду на T, то ограничиваясь в определении радиальной максимальной функции M точной верхней гранью до некоторого предела и пользуясь равномерной сходимостью u_{n_k} и $u_{n''_i}$ к u и v, соответственно, на любом компакте из U, имеем

$$\sup_{0 \le r \le r_0} |u(re^{i\theta}) - v(re^{i\theta})| = 0$$

для почти всех $\theta \in [-\pi;\pi]$, $0 \le r_0 < 1$; т. е. u = v на почти всех радиусах круга $|z| \le r_0$. Так как функции u и v на круге $|z| \le r_0$ непрерывны, то заключаем, что $u \equiv v$ на любом круге $|z| \le r_0$, $0 \le r_0$, $0 \le r_0$, $1 \le v$ всюду в круге v0, что противоречит предположению v0, v1, v2 и тому, что v3, v3 при v4 при v5. Полученное противоречие доказывает теорему v3.

Замечание 3. Утверждение о сходимости в метриках пространств h_{max}^p , $0 не может быть усилено до утверждения о сходимости в норме пространства <math>h^1$, как показывает пример последовательности функций $u_n(z) = p(ze^{i\alpha_n}), z \in U$, где (α_n) - произвольная бесконечно малая последовательность действительных не равных нулю чисел и функция p(z) определена при помощи (4).

Замечание 4. Аналог теоремы 3 справедлив для функций классов h^p_{max} , $0 . если условие (5) заменить на условие ограниченности <math>(u_n)$ в пространствах h^p_{max} и утверждение о сходимости в метриках пространств h^p_{max} для $0 - на утверждение о сходимости в метриках пространств <math>h^p_{max}$ любого p', 0 < p' < p.

Московский государственный университет им. М.Аомоносова Государственный инженерный университет Армении

Վ.Ի. Գավրիլով, ակադեմիկոս Վ.Ս. Զաքարյան, Ա.Վ. Սուբոտին Կոմպակտության սկզբունքներ $h^p_{max}, p>0$ տարածություններում

Սահմանվում են $h^p_{max}, p>0$, դասերը, որոնք ընկնում են Հարդիի h^p , p>0, հարմոնիկ ֆունկցիաների դասերի մեջ։

Բերվում է $h_{max}^p, p>0$, դասում բազմության լրիվ սահմանափակ լինելու անհրաժեշտ և բավարար պայմանը։

Կոմպակտության սկզբունքները $h^p_{max}, p>0$, տարածությունում ձևակերպված են նաև այլ տեսքով։

Աշխատանքը իր բնույթով կարելի է համարել հեղինակների [2] աշխատանքի շարունակությունը։

Литература

- 1. Duren P.L. Theory of H^p spaces. N.-Y. L. Acad. Press. 1970. XII. 258 p.
- 2. В.И. Гаврилов, В.С. Захарян, А.В. Субботин. ДНАН Армении. 2002. Т. 102. N3. C.203-210
 - 3. Привалов И.И. Граничные свойства аналитических функций. М.-Л. ГИТТЛ. 1950. 336 с.