А. К. Матевосян

Способ обработки результатов площадных электроразведочных измерений при нерегулярной сети пунктов наблюдений

(Представлено академиком Р. Т. Джрбашяном 7/VIII 2001)

Настоящая статья является логическим продолжением работы [1], в которой оценена погрешность площадных электроразведочных исследований (контактным способом регистрации) [2-4], связанная с точностью установления пунктов наблюдений, и с целью повышения их эффективности обоснована необходимость разработки методики таких исследований при нерегулярной сети пунктов наблюдений. В данной работе рассмотрена возможность использования нерегулярной (произвольной) сети пунктов наблюдений при площадных электроразведочных исследованиях и на примерах разнотипных геоэлектрических моделей показана эффективность предлагаемого способа регистрации и преобразования (трансформации) первичного и вторичного электрических полей (методами сопротивлений и ВП).

Для осуществления поставленной задачи вычислены основные интерпретируемые

параметры кажущегося сопротивления ρ_{S} (ρ_{Smax} , ρ_{Smin} , $\rho_{Smed} = \sqrt{\rho_{Smax}}$, ρ_{Smin} , $\rho_{Srel} = \rho_{Smax}/\rho_{Smin}$, здесь ρ_{Smax} , ρ_{Smin} - главные (экстремальные) значения ρ_{S}) и кажущейся поляризуемости η_{S} (аналогично ρ_{S}) при исследовании методами сопротивлений и вызванной поляризации многоэлектродной установкой ABCD [5]. Расчеты проведены при координатах питающих электродов A(-60, -50), B(-30, 70), C(70, -30), D(50, 60) (в метрах) для планшета съемки: –42 м \leq (x,y) \leq 42м, при шаге по x и y равном 1.5 м, для следующих четырех геоэлектрических моделей:

1- *однородная анизотропная среда*, при $\rho_n = 1200 \text{ Ом·м}$, $\rho_t = 800 \text{ Ом·м}$, $\eta_n = 0.01$, $\eta_t = 0.05$, $\alpha = 75^0$, $\beta = 40^0$ (здесь ρ_t и ρ_n - удельное электрическое сопротивление вдоль и поперек плоскости простирания одноосной анизотропии, η_t и η_n - поляризуемость при тех же направлениях, α - угол падения плоскости анизотропии, β - угол между простиранием плоскости анизотропии и осью у против часовой стрелки);

2 - *вертикальный контакт двух однородных сред,* при ρ_1 = 1000 Ом·м, η_1 = 0.01, ρ_2 = 800 Ом·м, η_2 =0.10;

3 - *однородная изотропная среда* (ρ_0 = 1000 Ом·м, η_0 = 0.01), содержащая полусферическую неоднородность, при ρ_1 = 800 Ом·м, η_1 = 0.10, x_1 = 2 м, y_1 = 2 м, r = 10 м (здесь x_1 , y_1 - координаты, r - радиус неоднородности);

4 - *однородная изотропная среда* (ρ₀ = 1000 Ом·м, η₀ = 0.01), содержащая сферическое тело, при ρ_1 = 800 Ом·м, η_1 = 0.50, x_1 = 2 м, y_1 = 2 м, z_1 = 12 м, r = 10 м (здесь x_1 , y_1 , z_1 - координаты, r радиус тела).

Представим способ преобразования данных, полученных нерегулярной сетью пунктов в правильную. Допустим, что определение вектора напряженности наблюдений, электрического поля \mathbf{A} в рассматриваемом пункте $N(x_N, y_N)$ нерегулярной сети выполняется по результатам измерений двумя и более (k < 2) приемными линиями (каждая из которых представлена двумя приемными электродами, один из которых расположен в пункте N, другой - в одном из смежных пунктов) с разносами, не превышающими R. В результате таких измерений для пункта N вычисляются (нормируя величину разности потенциалов между электродами по разносу соответствующей приемной линии) p₁-, .., p_k- составляющие вектора **А**: $A_{p1}^{(N)}$, .., $A_{pk}^{(N)}$. Взяв попарно значения произвольных составляющих вектора **А**, можно преобразовать их в требуемые х-и у-составляющие, по формулам [6]:

$$A_{xij}^{(N)} = (A_{pi}^{(N)} \sin v_j^{(N)} - A_{pj}^{(N)} \sin v_i^{(N)}) / \sin(v_j^{(N)} - v_i^{(N)}),$$

$$A_{yij}^{(N)} = (A_{pi}^{(N)} \cos v_i^{(N)} - A_{pj}^{(N)} \cos v_j^{(N)}) / \sin(v_j^{(N)} - v_i^{(N)}),$$
(1)

при $\sin(\nu_i^{(N)} - \nu_i^{(N)}) \neq 0$, т.е. когда векторы $A_{pi}^{(N)}$ и $A_{pj}^{(N)}$ не коллинеарны (пункты і и ј не находятся на одной прямой с N). Здесь (i,j) = 1,..., k; (i < j); $\nu_i(\nu_j)$ - угол между положительными направлениями осей x и $\textbf{p}_i \left(\textbf{p}_j\right)$ при отсчете от полярной оси против часовой стрелки.

Тогда усредненные значения х- и у-составляющих вектора А в пункте N нерегулярной сети определим из $m \le k(k-1)/2$ полученных значений по выражениям:

$$A_{x}^{(N)} = \sum (A_{xij}^{(N)} \cdot W_{ij}^{(N)}) / \sum W_{ij}^{(N)} \quad \text{if} \quad A_{y}^{(N)} = \sum (A_{yij}^{(N)} \cdot W_{ij}^{(N)}) / \sum W_{ij}^{(N)}, \tag{2}$$

где $W_{ij}^{(N)} = (R/d_i^{(N)}-1)(R/d_j^{(N)}-1)$ - весовой коэффициент, при $R > (d_i^{(N)}, d_j^{(N)}); d_i^{(N)} = (R/d_i^{(N)}-1)(R/d_j^{(N)}-1)$

$$\sqrt{(x_N - x_i)^2 + (y_N - y_i)^2}$$
 и $d_j^{(N)} = \sqrt{(x_N - x_j)^2 + (y_N - y_j)^2}$ - разнос приемных линий і и j, соответственно.

С использованием (2) получим усредненные значения х- и у-составляющих вектора А в пункте $M(x_M, y_M)$ правильной сети:

$$A_{x}^{(M)} = \sum (A_{xi}^{(N)} \cdot W_{i}^{(M)}) / \sum W_{i}^{(M)} \varkappa A_{y}^{(M)} = \sum (A_{yi}^{(N)} \cdot W_{i}^{(M)}) / \sum W_{i}^{(M)},$$
(3)

здесь суммирование выполняется для п (количество смежных с М пунктов нерегулярной сети),

при R >
$$d_i^{(M)}$$
, где $d_i^{(M)} = \sqrt{(x_M - x_i)^2 + (y_M - y_i)^2} \neq 0.$

При $d_i^{(M)} = 0$ составляющим $A_x^{(M)}$ и $A_y^{(M)}$ присваиваются значения $A_{xi}^{(N)}$ и $A_{yi}^{(N)}$, соответственно.

Путем геометрических построений определение х- и у- составляющих вектора **A** в пункте N выполняется следующим образом: сперва по значениям (величинам с учетом знаков) двух произвольных (но не коллинеарных) p_i- и p_j-составляющих строится вектор **A** (A_{pi}^(N) и A_{pj}^(N) стороны параллелограмма, |A| - его диагональ, проходящая через начало координат), а затем, опустив перпендикуляры с его конца соответственно на оси X и Y, определяются A_x и A_y. При необходимости можно определить и произвольную составляющую **A**. С целью оценки погрешности или визуализации результатов преобразований (1) можно воспользоваться следующей особенностью: проекции вектора **A** при всевозможных осях, проходящих через начало координат, располагаются на окружности, диаметром которой является данный вектор, а длина хорды, отсекаемой произвольной осью, равна величине соответствующей его составляющей.

Следует отметить, что в краевых частях планшета съемки могут наблюдаться некоторые искажения (уменьшение точности), ввиду измерения требуемых составляющих напряженности электрического поля по результатам измерений в определенном направлении (отсутствия равномерно, всесторонне расположенных смежных пунктов). В этом случае можно рекомендовать способ линейного интерполирования (и экстраполирования) векторного поля, предложенный при изучении поля БТ в требуемом полевом пункте по трем базисным пунктам [7] или же использовать при промежуточных этапах расчетов соответствующего параметра некоторые процедуры из пакета *SURFER*, в частности: *Minimum Curvature* или *K*riging [8]. Очевидно, что предлагаемые преобразования данных площадной векторной съемки нерегулярной сетью наблюдений в правильную позволяют полностью применять известные методики электроразведочных исследований.

Теперь воспользуемся произвольно заданной нерегулярной разряженной (более чем в 3 раза) сетью пунктов наблюдений, установленных в пределах вышепредставленного планшета съемки, фрагмент которой изображен на рис.1,а. Линиями на рис.1,б-г соединены пункты, расстояние между которыми не превышает R, показывающие, какие составляющие исследуемого электрического поля привлечены при преобразовании данных нерегулярной сети в правильную. Величины R выбраны кратными шагу правильной сети. Заметим, что при R = 3 м (рис.1,б) некоторые пункты соединены со смежными одной или двумя (почти расположенными на одной прямой) линиями и тем самым при преобразовании данных в этих пунктах невозможно определение требуемых значений поля, что в итоге приводит к появлению "белых пятен" на картах интерпретируемых параметров. С другой стороны, при R = 6 м (рис.1,г) в процессе преобразования данных для каждого пункта привлекается довольно много смежных пунктов, более удаленных от рассматриваемого пункта, что приводит как к существенному увеличению компьютерного времени преобразований, так и в определенной степени сглаживает поле (аномалии), что может привести к уменьшению контрастности проявления исследуемых параметров. Для данной нерегулярной сети оптимальным можно считать R = 4.5 м (рис.2,в).

Рис. 1. Верхний левый фрагмент нерегулярной разряженной сети пунктов наблюдений (а, б, в, г) и пункт наблюдений №160 (д) со смежными пунктами, расположенными в его окрестности с радиусами R, равными 3, 4.5, 6 м (линиями соединены пункты, расстояние между которыми не превышает R, равный 3 м (б), 4.5 м (в) и 6 м (г); пунктирная квадратная сетка - правильная сеть наблюдений).

На рис.1,д крупным планом показан пункт наблюдений №160 со смежными (тремья, шестью, четырнадцатью) пунктами при этих радиусах усреднения (приведения) данных R, соответственно. Заметим, что при преобразовании данных в этих пунктах использование некоторых пар приемных линий, таких как: №161 и 162; №241 и 246; №128 и 156; №129 и 241; №156 и 247; №128 и 247 - не целесообразно, поскольку они располагаются почти на одной прямой с пунктом №160, что приводит к увеличению погрешности преобразований. С целью уменьшения влияния данного фактора на конечный результат при расчетах принимались во внимание только те пары приемных линий, для которых соблюдалось условие: $|sin(v_j^{(N)} - v_i^{(N)})| > 0.1$ (при экспериментальных исследованиях рекомендуется $|sin(v_j^{(N)} - v_j^{(N)})| \ge 0.5$ [6]).

Рис. 2. Карты изолиний х- и у-составляющих вектора ј (в А/м²) при возбуждении электрического поля током, пропускаемым через питающий электрод А, по данным: а - квадратной сети; б, в - нерегулярной разряженной сети при R, равном 4.5 м (б - в пунктах нерегулярной сети; в - в пунктах квадратной сети после соответствующей трансформации).

Наблюдаемая схожесть приведенных карт х- и у-составляющих вектора **j** (рис.2,б,в), построенных различными вариантами по данным нерегулярной разряженной сети, и их несущественные расхождения ("волнистость" изолиний) с исходными картами j_x и j_y , соответственно (рис.2,а), несомненно говорит в пользу предлагаемого способа регистрации и преобразования данных (об устойчивости предлагаемого алгоритма решения поставленной задачи). Об этом свидетельствует и сопоставление карт различных параметров кажущегося сопротивления и кажущейся поляризуемости (в частности ρ_{Smed} и η_{Smed} при R = 4.5 м в случае нерегулярной сети - рис.3), несмотря на их общую характерную особенность - незначительную (несущественную для достижения поставленной цели) "волнистость" изолиний.

Рис. З. Карты изолиний ρ_{Smed} (в Ом · м) и η_{Smed} на поверхности четырех (1, 2, 3, 4) геоэлектрических моделей при возбуждении электрического поля многоэлектродной системой AD-BC, построенные по данным в пунктах наблюдений: а - правильной сети; б нерегулярной сети; в - нерегулярной сети после трансформации в рассматриваемую правильную сеть.

В заключение следует отметить, что применение нерегулярной сети пунктов наблюдений требует проведения дополнительных топографических полевых работ, связанных с определением координат каждого пункта (приемного электрода). Можно также рекомендовать применение современных зарубежных многоканальных (сотни и даже тысяча каналов) электроразведочных станций, однако целесообразна разработка многофункциональной измерительной компьютеризированной аппаратуры с соответствующим программным обеспечением, позволяющей проводить комплексные электроразведочные исследования методами с контактным способом измерений.

Институт геологических наук НАН РА

Литература

1. Матевосян А. К. - - ДНАН РА. 2002. Т.101. №2. С.

2. Инструкция по электроразведке. Л. Недра. 1984. 352 с.

3. Электроразведка. Справочник геофизика (под ред. В. К. Хмелевского и В. М. Бондаренко). М. Недра. 1989. В 2-х кн. 438 с., 378 с.

4. Комаров В. А. - Электроразведка методом вызванной поляризации. Л. Недра. 1980. 391 с.

5. Матевосян А. К. - Изв. НАН РА. Науки о Земле. 1999. Т.52. №1. С. 53-63.

6. *Матевосян А. К.* - Изв. НАН РА. Науки о Земле. 1999. Т.52. №2-3. С. 84-88.

7. *Матевосян А. К.* Способ геоэлектроразведки. Авторское свидетельство СССР №1704120. Бюллетень изобретений №1. 1992.

8. SURFER for WINDOWS. Contouring and 3D Surface Mapping. Version 6. User's Guide. Golden Software. 1997.

Ա. Կ. Մաթևոսյան

Կամայական դիտարկման ցանցի դեպքում մակերեսային էլեկտրահետախուզական չափումների մշակման եղանակ

Հոդվածում ուսումնասիրվում են կամայական դիտարկման ցանցի օգտագործման հնարավորությունները մակերեսային էլեկտրահետախուզական հետազոտությունների դեպքում։ Ցույց է տրվում առաջարկվող գրանցման և ձևափոխման եղանակի արդյունավետությունը տարբեր բնույթի երկրաէլեկտրական մոդելների օրինակների վրա։