4	ረਧፀ	របខ	US	ԱՆԻ	Ç	ի	Sſ	1 Ի	ውፀ	n :	ՒՆ	Նt	٦C	Þ		បទ	ίđ	៥ខ	Þ١	J	ԱԿ	ើរបា	ЪГ	ፓኮ	U
]	ΗA	ЦĮ	10	НАЛ	Б	Η	A 8	I	Α	К	A	Ц Е	Μ	И	Я		Н	ΑУ	К		ΑΡ	M	ΕH	ИI	Ν
]	ΝΑ	ΤI	01	NAL	Α	C .	ΑI	ΟE	Μ	Y	0	F	S	C :	ΙE	Ν	CI	ΞS	C) F	Α	RΜ	Eľ	II /	A
÷	ДО	КJ	ΙA	ДЫ						<u>9</u> t	ςЧ	በՒ	88	3Ն	Ŀ.	ſ					R	ΕP	01	λТ	S
	Żшտпр Том Volume	1	02									200)2											N⁰	2

ГЕОФИЗИКА

УДК 550.837

А. К. Матевосян

Оценка погрешности площадных электроразведочных исследований, связанной с неточностью установления пунктов наблюдений

(Представлено академиком Р. Т. Джрбашяном 7/VIII 2001)

Многочисленные теоретические и экспериментальные электроразведочные исследования контактным (гальваническим) способом регистрации (методами сопротивлений (МС), вызванной поляризации (ВП), блуждающих токов (БТ), естественного поля (ЕП), теллурических токов (ТТ), заряда (МЗ) и др.) [1-3] показали неоспоримое преимущество векторной съемки, заключающейся в измерении двух взаимно перпендикулярных составляющих напряженности электрического поля в каждом пункте наблюдений, по сравнению со способами, использующими одну приемную линию. Однако в настоящее время площадные векторные съемки осуществляются по правильной (квадратной или прямоугольной) сети пунктов наблюдений (заземлений приемных электродов) и объем таких полевых исследований весьма ограничен, поскольку для получения качественных результатов требуется незначительное смещение пунктов от принятой сети (строгое соблюдение как ортогональности, так и размеров приемных линий), что зачастую практически неосуществимо, особенно при измерениях с использованием неполяризующихся электродов, требующих особо благоприятных условий заземления [1-3].

В данной статье оценена погрешность, возникающая при смещении пунктов наблюдений от правильной сети, и на примере простых геоэлектрических моделей показана эффективность векторной съемки, проводимой согласно действующим в настоящее время инструкциям и рекомендациям.

С этой целью вычислены основные интерпретируемые параметры кажущегося сопротивления ρ_S (ρ_{Smax} , ρ_{Smin} , $\rho_{Smed} = \sqrt{\rho_{Smin} \cdot \rho_{Smin}}$) $\rho_{Srel} = \rho_{Smax}/\rho_{Smin}$, здесь ρ_{Smax} , ρ_{Smin} – главные (экстремальные) значения ρ_S) и кажущейся поляризуемости η_S (аналогично ρ_S) при исследовании методами сопротивлений и вызванной поляризации многоэлектродной установкой *ABCD* [4]. Расчеты проведены при координатах питающих электродов A(-60, -50), B(-30,70), C(70, -30), D(50, 60) (в метрах) для планшета съемки: $-42 \le$ (x, y) ≤ 42 м, при шаге по x и y, равном 1.5 м, для однородных изотропной (при $\rho = 1000$ Ом • м, $\eta = 0.01$) и анизотропной (при $\rho_n = 1200 \text{ OM} \cdot \text{м}, \rho_t = 800 \text{ OM} \cdot \text{м}, \eta_n = 0.01, \eta_t = 0.05, \alpha = 75°, \beta = 40°)$ (здесь ρ_t и ρ_n – удельное электрическое сопротивление вдоль и поперек плоскости простирания одноосной анизотропии, η_n и η_t – поляризуемость при тех же направлениях, α – угол падения плоскости анизотропии, β – угол между простиранием плоскости анизотропии и осью *у* против часовой стрелки) сред.

С целью количественной оценки погрешностей исследований, вызванных неточностью в установлении пунктов правильной сети, в таблице приведены пределы изменения параметров кажущегося сопротивления (ρ_{Smax} , ρ_{Smin} , ρ_{Smax} – в Ом · м, ρ_{Srel}) для однородных изотропной и анизотропной сред, а также их абсолютная величина относительной ошибки $(\delta, в \%)$ при семи (до 1, 2, 5, 10, 20, 30% и равном 10% от шага квадратной сети) значениях смещений пунктов наблюдений. Приведенные данные показывают закономерное увеличение как диапазона изменения параметров кажущегося сопротивления, так и абсолютной величины относительной ошибки с увеличением смещения ("разброса") пунктов наблюдений от узлов правильной сети. Как, в частности, следует из таблицы, при $\delta \leq 10\%$ над изотропной средой ρ_{Srel} принимает значения до 1.18, а при $\delta = 10\% - 1.23$, что при проведении экспериментальных исследований является отражением выраженной анизотропии проявления кажущегося сопротивления и при таких значениях смещений в установлении пунктов правильной сети может привести к ошибочной интерпретации данных (присутствие анизотропии исследуемой среды или резкой природной дисперсии удельного электрического сопротивления вмещающей среды). При этих же значениях смещений над анизотропной средой ρ_{Srel} принимает значения до 1.80 и 1.73, соответственно, что явно указывает на неверность или некачественность полученных данных (поскольку при $\delta \leq 10\%$ величина этого параметра больше, чем при $\delta = 10\%$), и судить об исследуемой среде при такой системе регистрации поля невозможно.

В дополнение к таблице для наглядного представления векторного электрического поля на рис.1 изображены карты изолиний *x*- и *y*-составляющих вектора плотности тока **j** (j_x и j_y) при возбуждении электрического поля питающим электродом *A*, полученные на основании измерения различными системами регистрации. Здесь и далее карты построены с использованием пакета программ SURFER версии 6.04 [5], Характерной особенностью приведенных карт, построенных при правильной сети с различной степенью смещения пунктов наблюдений (рис.1,б,в,г), являются существенные искривления (отклонения от карт рис.1,а) изолиний с увеличением δ .

Диапазон (пределы) изменения соответствующих параметров кажущегося сопротивления ρ_S (в числителе) и их абсолютные величины относительной ошибки (в знаменателе) при различных величинах смещения пунктов от правильной сети

2	Параметры кажущегося сопротивления											
0	$ ho_{S\max}$	$ ho_{S{ m min}}$	$ ho_{Smed}$	$ ho_{Srel}$								
	Изотропная среда											
$\leq 1\%$	993 - 1010	990 - 1007	993 - 1007	1.00 - 1.02								
	0.30	0.30	0.16	0.53								
< 20%	985 - 1021	979 - 1015	983 - 1017	1.00 - 1.03								
<u><u> </u></u>	0.60	0.61	0.33	1.07								
< 5%	976 - 1048	950 - 1033	970 - 1037	1.00 - 1.08								
<u> </u>	1.44	1.44	0.80	2.57								
< 10%	945 - 1097	899 - 1047	928 - 1069	1.00 - 1.18								
	2.96	2.92	1.63	5.34								
< 20%	901 - 1187	805 - 1094	$\frac{857 - 1133}{2}$	$\frac{1.00 - 1.39}{1.00 - 1.39}$								
	5.88	5.82	3.27	10.95								
< 30%	$\frac{825 - 1293}{200}$	702 - 1185	$\frac{807 - 1231}{100}$	$\frac{1.00 - 1.55}{17.04}$								
	8.84	8.59	4.86	17.04								
= 10%	907 - 1139	$\frac{860 - 1088}{5.00}$	902 - 1098	$\frac{1.00 - 1.23}{0.55}$								
	5.19	5.08	2.86	9.57								
	Анизотропная среда											
$\leq 1\%$	805 - 1068	630 - 884	749 - 971	1.00 - 1.63								
	0.24	0.24	0.16	0.34								
< 20%	800 - 1071	632 - 885	745 - 970	1.01 - 1.63								
<u><u> </u></u>	0.49	0.48	0.33	0.69								
< 5%	784 - 1089	629 - 904	740 - 984	1.00 - 1.61								
	1.14	1.13	0.80	1.59								
< 10%	757 - 1124	599 - 933	722 - 1005	1.00 - 1.80								
	2.28	2.29	1.63	3.20								
< 20%	724 - 1243	562 - 974	$\frac{682 - 1047}{2}$	1.01 - 1.80								
	4.43	4.66	3.27	6.44								
< 30%	$\frac{699 - 1304}{699 - 1304}$	$\frac{542 - 1010}{2}$	$\frac{654 - 1130}{100}$	$\frac{1.00 - 1.97}{10.07}$								
	6.69	6.81	4.86	10.07								
= 10%	$\frac{/14 - 11//}{2.04}$	$\frac{593 - 942}{4.07}$	$\frac{693 - 1036}{200}$	$\frac{1.00 - 1.73}{5.00}$								
1070	3.94	4.07	2.86	5.68								

В частности, несмотря на общую тенденцию изменения поля, уже при $\delta \leq 10\%$ (рис.1,в) наблюдается значительная "раздробленность" изолиний с множеством "островков". Подобная картина (рис.1) наблюдается и на картах изолиний *x*- и *y*-составляющих векторов напряженностей первичного и вторичного электрических полей на поверхности различных геоэлектрических моделей, с той лишь разницей, что ввиду их контрастности по удельному электрическому сопротивлению и поляризуемости аналогичные искажения наблюдаются при меньших величинах δ .

Рис. 1. Карты изолиний *x*- и *y*- составляющих вектора *j* (в A/м²) при возбуждении электрического поля током, пропускаемым через питающий электрод *A*, по данным правильной (квадратной) сети при δ (в %): a − 0; б − ≤2; в − ≤ 10; г − = 10.

На рис.2 приведены карты изолиний ρ_{Smed} для однородной анизотропной среды, и отмеченный характер проявления изолиний наблюдается уже при $\delta \leq 2\%$ (рис.2,в), а начиная со значений $\delta \leq 10\%$ (рис.2,д,е,ж) на этих картах практически полностью завуалировано истинное (какое-либо закономерное) проявление исследуемого параметра. Очевидно, что и на картах других интерпретируемых параметров, определяемых в процессе площадных электроразведочных исследований вышеперечисленными методами (кроме ВП), наблюдается аналогичная картина. В отличие от них изолинии карт параметров кажущейся поляризуемости ρ_{Smed} практически не искажаются при $\delta \leq 10\%$, и даже при $\delta \leq 30\%$ влияние данного фактора можно считать несущественным (рис.2), что объясняется нормированием вторичного электрического поля первичным с использованием данных измерений одними и теми же смещенными приемными линиями. Однако такие исследования методом ВП нельзя считать полноценными, поскольку судить о распределении кажущегося сопротивления на исследуемой территории по результатам измерений методом сопротивлений трудно (карты соответствующих параметров существенно искажены, в частности, локальные аномалии затушеваны), и эти материалы не могут быть использованы при комплексной интерпретации данных.

Рис. 2. Карты изолиний ρ_{Smed} (в Ом·м) и η_{Smed} на поверхности однородной анизотропной среды при возбуждении электрического поля многоэлектродной системой *AD-BC*, построенные по данным квадратной сети при следующих значениях δ (в %): a – 0; б – \leq 1; в – \leq 2; г – \leq 5; д – \leq 10; e – \leq 30; ж – = 10.

Таким образом, вышепредставленный материал подтверждает нецелесообразность векторных измерений по правильной сети наблюдений при площадных крупномасштабных электроразведочных исследованиях согласно действующим инструкциям и рекомендациям [1,2], в которых погрешность установления приемных электродов предусматривается до 5-10% (поскольку при меньших значениях выполнение этих работ трудно реализуемо). В связи с этим появляется острая необходимость разработки методики площадных электроразведочных работ при нерегулярной сети пунктов наблюдений.

Институт геологических наук НАН РА

Ա. Կ. Մաթևոսյան

Մակերեսային էլեկտրահետախուզական ուսումնասիրությունների սխալի գնահատումը կապված դիտարկման կետերի տեղադրման անՃշտության հետ

Հոդվածում գնահատված է սխալը, որը առաջանում է դիտարկման ցանցի կետերի շեղման հետևանքով կանոնական (քառակուսային) ցանցից։ Ուսումնասիրությունների հիման վրա արվում է կարևոր եզրակացություն՝ մակերեսային էլեկտրախուզական հետազոտությունների դեպքում կամայական դիտարկման ցանցի օգտագործման մեթոդիկայի մշակման անհրաժեշտությունը։

Литература

1. Инструкция по электроразведке. Л. Недра. 1984. 352 с.

2. Электроразведка. Справочник геофизика (под ред. В. К. Хмелевского и В. М. Бондаренко). М. Недра. 1989. В 2-х кн. 438 е., 378 с.

3. *Комаров В. А.* - Электроразведка методом вызванной поляризации. Л. Недра. 1980. 391 с.

4. Матевосян А. К. - Изв. НАН РА. Науки о Земле.. 1999. Т.52. №1. С. 53-63.

5. SURFER for WINDOWS. Contouring and 3D Surface Mapping. Version 6. User's Guide. Golden Software. 1997.