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Several models of discrete memoryless multiple-access channels are investigated. New inner
bounds for Incapacity regions for average error probability are obtained.
1. Introduction
The multiple-access channel (MAC) W ={W : X; XX, = Y} with two encoders and one
decoder is defined by a matrix of transition probabilities
W = {W(ylxy, x2), x1 € Xy, x; € Xy, ¥y €Y},
where X; and X, are the finite alphabets of, respectively, the first and the second inputs of the channel

and Y is the finite output alphabet. The channel is memoryless, that is for N-length sequences

_ N _ N
X1 = (X11,X12, ", X1n) € Xy, Xp = (X21, X2, 77, X2n) € X3,

y= vy, Y) €YY,

the transition probabilities are given in the following way

N
WN(Y|X1'X2) = 1—[ W (ylxy, x3).
n=1

The first model of the MAC we investigate is the most general one: the MAC with correlated
encoders, it was first studied by Slepian and Wolf [1]. Three independent sources (Fig. 1) create
messages to be transmitted by two encoders. One of the sources is connected with both encoders and
each of the other two is connected with only one of the encoders.
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Fig. 1. MAC with correlated encoder inputs

Let My, ={1,2,..., My}, M; ={1,2,...,M;} and M, ={1,2,...,M,} be the message sets of
corresponding sources. The code of length N for this model is a collection of mappings (f1, f2,9)
where fi: My X My » XN, f, : My X M, » XN are encodings and g : YN —» My X My X M, is
decoding. The numbers

1 :

N logM;, i=0,1,2,
are called code rates. We use the logarithmic and exponential functions to the base 2. Denote

fi(mg,my) = X3(mg, my), f2(mg, my) = X,(my, my),
f(mg, my, my) = (fi(mo, my), f2(mo, my)),
g~ (mg, my,my) = {y : g(y) = (my, my, my)},
then
e(mg, my, my) = WN{YN — g~ (mg, my, my)|f (mg, my, my)},

is the error probability of messages m,, m; and m,. We study the average error probability of the cod

_ 1
e(f,g,N'W)=m Z e(mg, my, my).

Mo,Mq,My
Let E > 0. Nonnegative numbers R, R;, R, are called E-achievable rates triple for MAC W, if for
any 6; > 0, i = 0,1, 2, for sufficiently large N there exists a code such that

1
N
and the average error probability satisfies the condition
e(f,g,N,W) < exp{—NE}.

The region of all E-achievable rates triples is called the E-capacity region for average error
probability and denoted C (E, W). When E — 0 we obtain the capacity region C (W) of the channel W
for average probability of error.

Dueck [2] has shown that in general the maximal error capacity region of MAC is smaller than
the corresponding average error capacity region. The determination of the maximal error capacity
region of the MAC in various communication situations is still an open problem.



In [1] the achievable rates region of MAC with correlated coders was found, the random coding
bound for reliability function was constructed and in [3] the sphere packing bound was obtained.

In the case with M, = 1 (Fig. 2) we have the classical MAC, first introduced by Shannon [4] and
studied by Ahlswede [5], [6] and Van der Meulen [7].
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Fig. 2. Regular MAC

Shannon described the capacity region of this channel, Ahlswede obtained a simple
characterization of the capacity region.

The model, when M; = 1 (Fig. 3), is called asymmetric MAC, it was considered by Haroutunian
[3]. Here one of two messages have access only to one encoder, whereas the other message have access
to both encoders.
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Fig. 3. Asymmetric MAC

Willems and Van der Meuien [12], [13] investigated MAC with cribbing encoders in various
communication situations and established the corresponding capacity regions. In this paper we shall
consider only one of this configurations (Fig. 4), investigated by van der Meuien [14], when the first
coder encodes only after learning the entire codeword produced by the second encoder, which encodes
his message m, in the usual way.
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Fig. 4. MAC with cribbing encoders



For above mentioned models the E-apacity regions were investigated in [15], where corres-
ponding sphere packing bounds were obtained, but there was a mistake in the construction of random
coding bounds. Here we derive the new inner bounds of E-capacity regions for the same cases.

2. Formulation of results

Let us introduce an auxiliary random variable U with values in a finite set U. Let random
variables U, X;,X,,Y with values in alphabets U,X;,X,, Y respectively, form Markov chain
U © X; X, ©Y and are given by the following probability distributions :

Py ={Py(u), uelU}
P ={P(x;|lu),x; € X;, i=1,2,
P = {Py(W)Py (x1|u) P3(xz|u), x; € Xy, x; € X3,
P = {P(u,x1, %) = Po(u) P(x1,x2|u), %1 € X1, %, € Xy,
with > P(xq, x5|w) = P (x;|w), i =1,2,

Fa—i
and P oV = {Py(u)P(x1, x5 W)V (y|xq, x3), %1 € X,

where V = {V (y|x1,x2), X1 € X7, x5, € X5,y € Y} is some probability matrix.

For our notations of entropies, mutual informations, divergences as well as for the notions of
types, conditional types and well known relations we refere to [16], [17], [18]. In the proofs we use

the following representation: for (x4,X,) € T3 (X1, X,), ¥ € 5y, (Y x4, X,)
WN(y|xy,X;) = exp{—N(Hpy (Y|(Xy, X2) + D(V||W|P))}.
Note also that D(P o V||P* o W) = D(P||P*) + D(V||W|P)
and D(P||P*) = I,(X; A X3U).
To introduce the random coding region R,.(E,W) we shall use the definition of conditional
mutual information among three random variables introduced by Liu and Hughes in [11]:

Ipy (X1 AX; AY|U) = Hp: (X1 |U) + Hp; (X2 |U) + Hpy (YU —
—Hpy (Y, X1, X5|U) = Ipy (Y A Xy, X5|U) + Ip (X1 A X3 |U).

Then the random coding region is
R-(P*,E,W) ={(Ry, Ry, R,) :

0<R; < ~ min | Ipy(Xi A X3_i, Y|U)+
P.V:D(PoV||P*oW)<E
+D(PoV|P*oW)-E", i=1,2,
0 = PLl + RQ < min : |Ip.1.-'(X1 AN Xg A Y‘U)‘l—
PV:D(PoV| P*oW)<E

+D(PoV||P*oW) - ET,
Ro+ Ri+ Ry < min E\IP,V(Y/\XI,XQ)+IP(X1/\X.2!:U)+

~ PV:D(PoV|P*oW)<



+D(PoV|P*oW) — E|™},
and

R(E,W) = co{lUR,(P*, E,W)},

where co{R} is the convex hull of the region R.
The sphere packing bound obtained in [15] is the follwoing:

Rsp (P,E,W) = {(Ro,Ry, R;) :
0<R; < min Ipyv(X; NY

T V:D(V|W|P)<E

(jr XR—?')? 1= l 2?

0<Ri+Ry < min Ipv (Y N X1, X5|U),

V:D(V||W|P)<E
.R{] = .Rl S R‘g i I_nin IPIIP.' {}' A _X’; ; ;{2\)}:
V:D(V|[W|P)<E
and
Rop(B, W) = co{JR.p(P, E,W)}.
P
Theorem 1. For all E > 0, for MAC with correlated sources

R.(E,W) c T(E,W) C R,,(E,W).

Corollary. When E — 0, we obtain the inner and outer estimates for the channel capacity region,
the expressions of which are similar but differe with the PD P and P*. The inner bound coincides with
the capacity region:

Rl . iy Rg L .[p*’w‘(y A )(1_. _sz,[/')
RO + RI - R'Z S IP*,W'(Y/\ Xl'XE,}}

Corresponding results are obtained also for the regular MAC.

For the asymmetric MAC and MAC with cribbing encoders similar outer and inner bounds of E-
capacity are obtained, which when E' — 0 are equal and coincide with the capacity region.

The proof of inner bound from theorem 1 is based on the random coding method.
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U. G. Zupnpjniiyut

Upwgnipjnit-hniuwhnipjnitt mppnypubph tnp ukppht
quuhwunwljuitp npnowlh puquudnunp juwninhubph hwdwp

Niunidbwuhpyt) B wpwtg hhonnnipjut nphuljpbn puquudninp juwyninhubph wwup-
plip Unpbjutp: Unwgyb) bu E-ntbunipjut mhpnyph tnp tbpphtt qowhwwnwlwtutp dhoht
upuwh hwjwbwlwinipjut niwypnid: Gpp hntuwhnipniup dguuinud E qpnjh, unwugynud k
Juwninnt nitbwlnipjutt mhpnyph ubkpphtt quwhwwnwlwip: Cunhwinip puquuuninp
Juwninnt phypnid wyn quwhwnwlwip twdwt £ wpgbt huynth wpunwphtt guuhwnw-
Jwlht, puyg nmwppipynd £ hwjwbwlwbwihtt pupjunidtipny: Uuhdbwnphl puquuuninp
Juwninnt nhypnd, htyywbu twb wyb dwubwynp ghwypnud, Gpp Ynnuynphstitiphg dkyp
wnbnklnipnit £ unwinud djniu Ynnyudnphshg, nttwlnipjutt mhpnyputph vnwugdws ubp-
pht quwhwwnwjuuttpp hwjwuwp o hwdwywnuwupwt wpnuphtt gqowhwnwljwutpht
b hudptljunud Bt wpnkt hwynth nitbwlnipjut mhpnypubph htwn:

M. E. ApyTioHsSIH

HoBble BHyTpeHHHE OLIEHKHU 00J1aCTH CKOPOCTH-HAAEKHOCTD Il
onpeaeJeHHbIX KAHAJIOB MHOKECTBEHHOI0 JOCTyNa

HccnenoBanbl pa3sHble MOJENN JUCKPETHBIX KAaHAJIOB MHOXECTBEHHOI'O JOCTyna 0e3 MaMsTH.
[TomyuyeHs! HOBbIE BHYTPEHHHUE OLIEHKH 007acTh E- MpoIyCKHON CIIOCOOHOCTH B Cily4ae CpeaHel Bepo-
atHocTH omnOKku. Koraa Hage)KHOCTh CTPEMHTCS K HYJIIO, TTOJIy4aeTcsl OLEeHKa 00JIAaCTH MPOIYCKHOM
CIOCcOOHOCTH KaHama. B cirydae o0riero kaHaia MHOKECTBEHHOTO JIOCTyIIa 3Ta OIEHKA ITOX0Ka Ha yKe
M3BECTHYIO BHEUIHIOIO OLICHKY, HO OTJIMYAE€TCsl BEPOSATHOCTHBIMM paclpelesecHusAMH. B ciydyae acuMm-
METPUYHOrO KaHaja MHOKECTBEHHOIO JOCTYIIA, a TAK)KE B TOM YaCTHOM CJlydae, KOTAa OJUH U3 KOJe-
POB ToJTy4aeT HHPOPMALIUIO C PYTOro KoJAepa, MOJyUYeHHbIe BHYTPEHHUE OLEHKH 00acTeil mpoIyck-
HBIX CIIOCOOHOCTEH paBHBI COOTBETCTBYIOUIMM BHEIIHHM OIEHKAM M COBIAJAIOT C YK€ M3BECTHBIMH

00J1aCTSIMH MPOTTYCKHBIX CITOCOOHOCTEH.
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