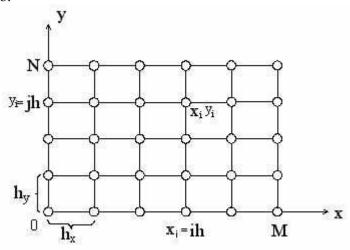
В.Б.Нерсисян

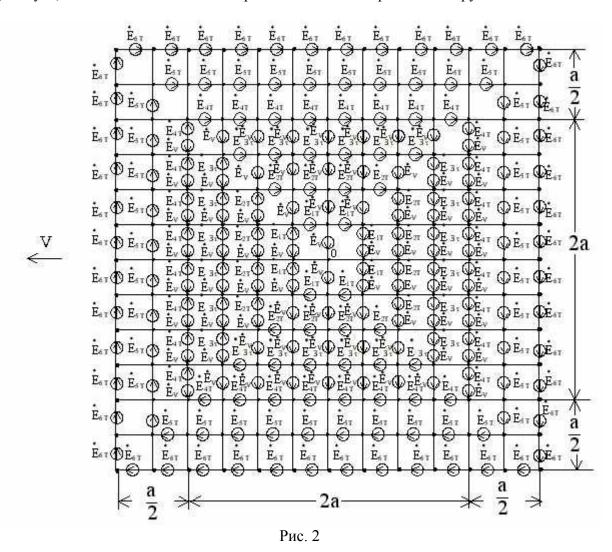
Расчет токов в проводящем немагнитном листе при его движении методом сеток

(Представлено академиком Г.Л. Арешяном 16/XI 2001)

Определение параметров движущегося проводящего немагнитного листа с помощью электромагнитных преобразователей связано с расчетом токов в листе на основании решений уравнений электромагнитного поля при соответствующих заданных граничных условиях [1]. Однако известные методы сложны с точки зрения практического применения и не обеспечивают достаточной наглядности контуров прохождения токов в листе. Последнее обстоятельство очень важно при разработке высокочувствительных электромагнитных преобразователей толщины и скорости движущегося листа.

Целью настоящей работы являлся поиск упрощенного метода расчета токов в листе и контуров их замыкания для математической обработки электромагнитных преобразователей, доступный для инженеров-проектировщиков. При этом полученное решение лишь немного отличалось от точного.




Рис. 1

Одним из методов расчета токов в проводящем листе, движущемся со скоростью V, является сеточный метод. Суть его состоит в том, что область проводящего изотропного листа, расположенного в воздушном зазоре преобразователя, представляется в виде прямоугольника $\vec{D} = \{0 \le x \le M, \ 0 \le y \le N\}$. Разобьем отрезки [O, M] и [O, N] соответственно на N_1 и N_2 части (рис.1). Пусть $h_x = [M/(N_1)] \ h_y = [N/(N_2)]$.

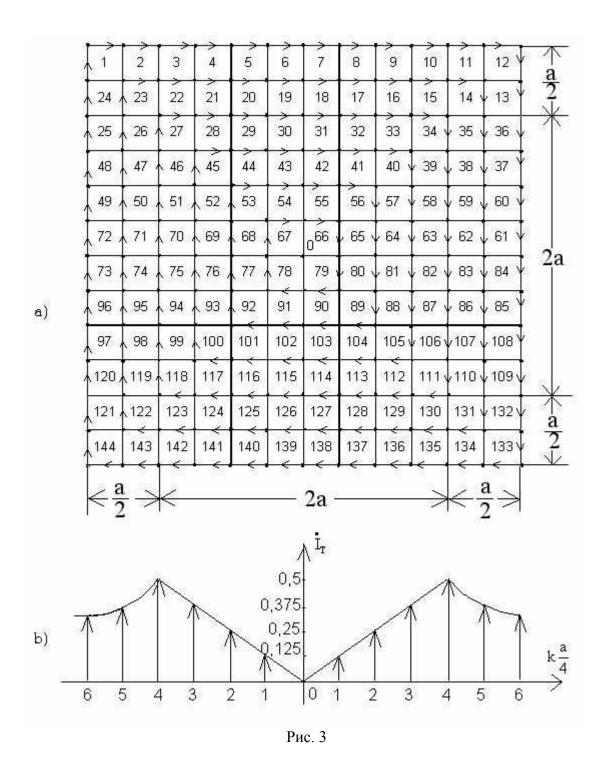
Через точки деления проведем прямые, параллельные соответствующим осям. В результате пересечения этих прямых получим узлы (x_i, y_i) , которые и образуют сетку. Расстояние между соседними узлами $x_i - x_{i-1} = h_x = [1/(N_1)]$ и $y_i - y_{i-1} = h_y = [1/(N_2)]$ назовем шагами сетки по направлениям x и у соответственно. Так как зона контроля преобразователя имеет квадратную площадь, то целесообразно применять постоянный шаг по каждому из направлений, т. е. равномерную сетку.

Каждая сетка является схемой замещения проводящего листа с идентичной площадью. Поэтому ветви схемы замещения одинаковы и содержат последовательно соединенные активные сопротивление и индуктивность. В схеме замещения емкостный элемент

отсутствует, так как токи смещения в проводящем листе в расчет не берутся.

Выбранная схема замещения обоснована экспериментально путем измерения вносимых сопротивлений эталонных образцов листов различной толщины. Осуществим расчет токов в ветвях сетки при OM = ON = 3a, $N_1 = N_2 = 12$, $h_x = h_y = [3a/12]$, при этом ветви сетки представлены как равные комплексные сопротивления.

В результате получим сетку, показанную на рис.2, которая состоит из 144 контуров. С целью упрощения схемы комплексные сопротивления ветвей не показаны. Приведенная сетка, кроме рабочей площади $2a\times 2a$, находящейся под полюсным наконечником преобразователя, содержит участок, со всех сторон расширенный на величину [а/2]. Это делается для уточнения контуров замыкания токов в проводящем листе при его движении со скоростью V.


Предполагается, что индукция под полюсным наконечником площадью $2a \times 2a$ однородна и изменяется по синусоидальному закону, а в расширенном участке отсутствует. Эти допущения делаются исходя из конструктивных особенностей электромагнитного преобразователя броневой конструкции [2].

При перемещении сетки, показанной на рис.2, со скоростью V происходит изменение потокосцепления и в сетке возникает два вида ЭДС: трансформаторная $\dot{\mathbf{E}}_{T}$ и движения $\dot{\mathbf{E}}_{V}$. Для определения ЭДС трансформации воспользуемся уравнением электромагнитной индукции $\oint \vec{\mathbf{E}} \, d\vec{\mathbf{I}} = -[(d\Phi)/dt]$ Максвелла для шести замкнутных контуров с центром O (рис.2). Результаты расчетов приведены в таблице.

Номера контуров от центра О	1	2	3	4	5	6
ЭДС контуров	Ė _{1T}	Ė _{2T}	Ė _{3T}	Ė _{4T}	Ė _{ST}	Ė _{6T}
Величина ЭДС контура в	1 – j1	4 – j4	9 – j9	16 – j16	16 – j16	16 – j16
относительных единицах						
Величина ЭДС ветвей	0,125 -	0,25 -	0,375 -	0,5 -	0,4 -	0,333333 -
контура в			j0,375	j0,5		j0,333333
относительных						
единицах						

Направление ЭДС выбирается исходя из правила проходного винта. В ветвях сеток, находящихся под полюсными наконечниками (площадь $2a\times2a$), поперечеными направлению движения V, возникают ЭДС движения $\dot{\mathbf{E}}_{\mathbf{V}}$, в то время как в ветвях, продольных направлению движения, они не возникают. Так как длины ветвей сеток одинаковы, а магнитная индукция в рассматриваемом участке однородна, то $\dot{\mathbf{E}}_{\mathbf{V}}$ этих ветвей равны между собой. Их направление выбирается на основании правила правой руки. Здесь принято $\dot{\mathbf{E}}_{\mathbf{V}} = 1$ в относительных единицах. При составлении схемы замещения сетки, показанной на рис.2, учтены направления $\dot{\mathbf{E}}_{\mathbf{T}}$ и $\dot{\mathbf{E}}_{\mathbf{V}}$.

Определим токи в ветвях сетки на основании метода наложения.

Вначале найдем токи в ветвях сетки от ЭДС $\dot{\mathbf{E}}_{\mathsf{T}}$. Расчетную схему получим из рис. 2, учитывая, что $\dot{\mathbf{E}}_{\mathsf{V}} = 0$. Комплексные сопротивления отдельных ветвей сетки одинаковы и принимаются равными $Z_0 = \mathbf{r}_0 + j\omega L_0 = \mathbf{l} + \mathbf{j}\mathbf{l}$ относительных единиц.

Для полученной схемы из 144 контуров составлены уравнения по контурным токам. Совместное их решение позволило получить токи в ветвях и закономерности распределения токов трансформаторного составляющего $\mathbf{I}_{\mathbf{T}}$ контуров от центра к краям рассматриваемого участка $\mathbf{k}[a/4]$ (где $\mathbf{k}=1,2,3,4,5,6$ номера контуров рис. 3а, в).

Теперь определим составляющие токов в ветвях сетки, обусловленные $\dot{\mathbf{E}}_{\mathtt{V}}$. Расчетную схему также получим из рис. 2, учитывая, что $\dot{\mathbf{E}}_{\mathtt{T}} = 0$. Комплексные сопротивления ветвей исходной схемы заменяются активными сопротивлениями и приняты равными $Z_0 = r_0 = 1$

относительных единиц.

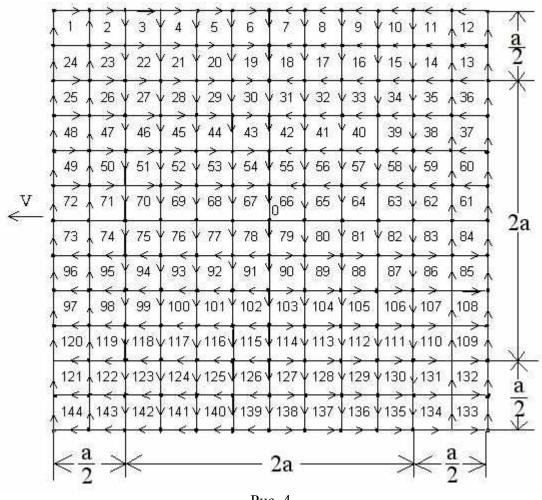


Рис. 4

Для полученной схемы из 144 контуров составлены уравнения по контурным токам. Совместное их решение позволило получить токи в ветвях, направления которых показаны на рис.4.

Определена магнитная индукция как для отдельных составляющих токов, так и для их алгебраической суммы. Установлена результирующая индукция в воздушном зазоре преобразователя.

Государственный инженерный университет Армении

Литература

- 1. Шимони К. Теоретическая электротехника. М. Мир. 1964. 773 с.
- 2. Патент РФ N 1249313 Нерсисиян В. Б. Открытия. Изобретения. 1986. N 20.

Վ. Բ. Ներսիսյան

Շարժվող ոչ ֆեռոմագնիսական հաղորդիչ թիթեղում հոսանքների որոշումը ցանցերի մեթոդով

Հետազոտվում են էլեկտրամագնիսական ձևափոխիչի օդային բացակում որոշակի արագությամբ շարժվող ոչ ֆեռոմագնիսական հաղորդիչ թիթեղում առաջած էլշու-ները և նրանցով պայմանավորված հոսանքները ցանցերի մեթոդով։

Ցանցերի առանձին Ճյուղերում առաջացած հոսանքները որոշվել են համաձայն վերադրման սկզբունքի, որպես հանրահաշվական գումար թիթեղի շարժումի և տրանս-ֆորմատորային բաղադրիչ հոսանքների։ Բերված են այդ հոսանքների փակման կոնտակտները ցանցերի Ճյուղերում։