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1. Introduction. Our paper is concerned with one model for concurrency, sometimes qualified as
"true concurrency" model, because it takes of events and causality as fundamental [1,2,3]. Our goal is
to investigate languages of infinite concurrent processes in one class of flow event structures - infinite
homogenous flow event structures. 

In this paper we are interested in two known formalisms of describing the behaviour of flow event
structures: configurations (i.e., sets of partial ordered events), and proving sequences (i.e., sequences
of events). 

First, we prove that the language of infinite configurations of homogenous flow event structure is
-regular. There exists an algorithm that constructs a Büchi [4] automaton representing -language of

configurations for any homogenous flow event structure. Thus the language of infinite configurations
may be represented in monadic second-order logic. 

Then we investigate languages of proving sequences in homogenous flow event structures. These
languages can be represented by a class of sentences of Presburger logic complemented with a finite
set of monadic predicates. There exists algorithm recognizing the emptiness of these languages. There
exists an algorithm that for each sentence of mentioned class constructs a homogenous flow event
structure representing the language defined by the sentence. 

2. Languages of infinite configurations. In this section, we give basic definitions regarding flow
event structures (FES) and then study languages of configurations. 
 Definition 1 (flow-event structure )[3]. A flow event structure (FES) is S = (E, #,

 E is a denumerable set of events, 
# E × E is a symmetric conflict relation, 

E × E is an irreflexive flow relation.
Definition 2 (configuration)[3]. A configuration of flow event structure S = (E, #, ) is a subset X
E such that 
 X is conflict-free, 

 X does not contain a causality cycle, i.e., the relation X is an ordering ( stands for the
transitive closure), 

 For all e X the set { e e X e X e} is finite, 
 Each e X is saturated in X, i.e., if e e and e X then there exists e X such that e e and

e # e .
   We present below the definition of a class of infinite flow event structures. We call these FES -
homogenous FES (HFES). This class will be the object of our study. 
   Let S = (E, #, ) be an arbitrary finite FES. Consider infinite sequence of FES's: 

S1 = (E1, #1, 1), S2 = (E2, #2, ), , where for i = 1, 2, (1)



that is each Si is isomorfic to S.
   We assume that events of these FES are connected by conflict and causality relations in a regular
way. More precisely, let L, R, P be three finite sets of binary relations on E :

where 0 < l .
   By means of these relations we construct three infinite relation s families that connect the events
from different FES s of sequence (1). The construction of these families is as follows.
   Set for Ll L and i = 1, 2,

Each relation Li
l will play the role of causal relation between the events of Si and Si l, i.e., if (ei l, ei ) 

Li
l then the event ei l Ei l will be one of the causes of the event ei Ei.

   Set for Rl R and i = 1, 2,

   Each relation Ri
l will play the role of causal relation between the events of Si and Si+l, i.e., if (ei+1, 

ei ) Ri
l then the event ei+l Ei+l is one of the causes of the event ei Ei.

   Set for Pl P and i = 1, 2,

Each relation Pi
l will play the role of conflict relation between the events of Si and Si l, i.e., if (ei l, 

ei ) Pi
l then the events ei l Ei l and ei Ei are in conflict.

Definition 3 (homogenous flow event structure). An infinite FES S = (E , # , ) is called 
homogenous flow-event structure (HFES) if it is generated by the quadruple (S, L, R, P), where S = 
(E, #, ) is an arbitrary finite FES, L, R, P are finite sets of binary relations over E, and 



   Notations to be used throughout the paper are as follows.
   Let Q be an arbitrary subset of E. We denote by Qi the corresponding subset of Ei, i.e., Qi = 
{ei|e Q}. 
   Further we shall be concerned about languages of configurations of HFES. Let a quadruple (S = (E, 
#, ), L, R, P) be given and HFES S = (E , # , ) is generated by the quadruple. 

   We consider the alphabet 2E and words over 2E, i.e., finite sequences of sets 

where Qi E and the corresponding sequence (3): 

where = {ei|e  Qi} Ei. Remark that  E and each finite configuration of S can be 

uniquely represented as . In this case, we say that the word defines a configuration 

of S . 

We say that a set C(S ) of finite words over the alphabet 2E is a language of finite configurations of 

HFES S if C(S ) = {Q1 Q2 Qn | Q1 Q2 Qn defines the configuration of S }.

Theorem 1. For each HFES S there exists a finite state automaton over alphabet 2E accepting a 

word Q1 Qn iff it defines a configuration of S .

We denote by C (S ) the -language Büchi-recognizable by automaton  B(S ) = ( F, Ø, Ø )  

over 2E.  
   Evidently, -word over 2E belongs to the -language C (S ) iff for each n > 0 exists a n0 > n such 

that defines a configuration of S . This gives us the Theorem 2. 

Theorem 2. The language C (S ) of all infinite configurations of any HFES S is -regular. 
There exists an algorithm that constructs for any S a Büchi automaton B(S ) representing the -

language C (S ) of configurations. So the -language C (S ) can be represented in monadic 
second-order logic.

3. Languages of proving sequences. In this section, we study the languages of proving sequences, 
i.e., linearizations of configurations. 

Definition 4 (proving sequence for S )[3].  Given S , a proving sequence in S is a (finite or 
infinite) sequence of distinct nonconflicting events (i) E (i.e., i j (i) (j) 
and (i) # (j) ) for all i, j ) satisfying 

   We denote by P(S ) a language of all infinite proving sequences in S . We shall say that the 
language P(S ) is represented by S . It is known that P(S ) can not be accepted by finite automaton 
[6]. 
   We present below a logic L and a class of well-defined sentences of L which describes the 
languages P(S ) of proving sequences for arbitrary HFES S .

(2)

(3)



Given HFES S , consider the alphabet E = {ej  | e E, j > 0} . We shall represent an -word = 
(0) (1) , where (i)  E by the structure = ( , 0, +1, <, {qe}e E , ) . Here ( , 0, +1, <) is 

the structure of natural numbers with zero, successor function and the natural ordering and qe is 
monadic predicate such as 
   qe = T if i  and (i) = ej for some j, and

(i) is one-place function defined on , i.e., (i) = j if (i) = ej for some e E , i.e., (i) is the 
index of event which stands in i-th position in  . 
   We allow also variables i, j for natural numbers, i.e., for positions of -words and for indexes of 
events. Terms are constructed from the constant 0, variables i, j by application of "+1" (successor 
function) and  (index function). Atomic formulas are of the form qe(i), t = t t t (i) = t, where t, 
t are terms. L-formulas are constructed from atomic formulas using the connectives and 
quantifiers acting on variables. Formulas without free variables are called sentences. 
   Consider two predicate families {qe(i, j)}e E and {ue(i, j)}e E . They can be expressed by 
fundamental notions of L as follows.

   The predicate qe(i, j) denotes the statement " (i) = ej". The predicate ue (i, j) denotes the statement 
"there exists i < i such that (i ) = ej". 
   Now we consider one class of propositional formulas. Each formula of this class generates a 
sentence of L that determines an -language representable in a HFES. 
   Let us consider a formula (i, j) without quantification constructed from elementary statements of 
the set 

using the connectives and let *(i, j) be its disjunctive normal form. 
   Formula (i, j) is well-defined if its disjunctive normal form *(i, j) satisfies the following 
conditions: 

 For each summand of formula *(i, j) there exists unique e  E such that elementary statement qe
(i, j) is contained in the summand without negation. A summand of *(i, j) is called a e-summand if it 
contains qe (i, j). 

 If *(i, j) contains ue (i, j + t) or ue (i, j + t) then *(i, j) contains e-summand too. 
 If a e-summand contains ue (i, j + t) then each e-summand contains ue (i, j + t) and e -

summand contains ue (i, j t).

 If *(i, j) contains two e-summands 1 and 2 then for each ue (i, j + t) 1 \ 2 there is a ue (i, j 
+ t ) 2 \ 1 such that e -summand contains ue (i, j t + t), and each e -summand contains ue
(i, j + t t).
   Starting from arbitrary well-defined formula (i, j), we construct now a correspondent sentence L 
of logic L. 
   Let a well-defined formula (i, j) be given and = max {|t| such that u(i, j + t) enters (i, j)}. 
Consider the formula (i) = (i, 1) (i, 2) (i, ), where (i, k) is obtained from *(i, 
k) by substitution of value T instead of all occurences of u(i, k t) and u(i, k t) for k t Then we 

(4)

{qe (i, j) | e E}  {ue (i, j + t) | e E,  t = 1, 2,



get formulas (i)  and (i, j) from the formulas (i) and (i, j) by replacing all occurences of q(i, 
j), u(i, j + t) by correspondent expressions (4). Finally, we construct the following sentence L of 
logic L : 

   Thus to each well-defined formula (i, j) we associate a sentence L of logic L. We call it sentence 
of L generated by (i, j).

Theorem 3. Suppose L is an -language over infinite alphabeth E = {ei  |e E, i  N}, where E 
is a finite set. Then the following conditions are equivalent:
   1) L is definable by a sentence L generated by well-defined formula.
   2) L = P(S ) for some HFES S .

Corollary 1. The emptiness problem of -language P(S ) is decidable.
   Consider logic L+ which differs from L by the following items: 

 A finite alphabet E {|} is considered instead of infinite E ;
 A predicate q| is added such that q|(i) = T iff (i) = | in the word = (1) (2) 
 The function  is excluded. It is replaced by operation of addition of arbitrary natural numbers.

   Thus L+ is the Presburger logic with additional monadic predicates {qe}e E  {q|}. Evidently, the 
function  can be computed in L+ . 

Theorem 4. The -language P(S ) of proving sequences for arbitrary FES S can be represented 
by a sentence of Presburger logic extended by a finite number of monadic predicates.

Corollary 2. The emptiness problem is decidable for each sentence -defined 
formula.
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Կ.Վ. Շահբազյան, ակադեմիկոս Յու.Հ. Շուքուրյան 

 

Հոսքային պատահարային կառուցվածքների հաշվարկների լեզուների 

տրամաբանական ներկայացումը 

 

Դիտարկվում են բախշված համակարգերի մոդելներից մեկի` համասեռ պա-

տահարային կառուցվածքների, հաշվարկների լեզուները և նրանց տրամաբանական 

ներկայացումը:  

Ապացուցվում է, որ անվերջ կոնֆիգուրացիաների լեզուները ներկայացվում են 

մեկտեղանի երկրորդ կարգի պրեդիկատների տրամաբանության մեջ:  

Ապացուցող  հաջորդականությունների  լեզուները  ներկայացվում  են  վերջավոր 

մեկտեղանի պրեդիկատներով ընդլայնված Պրեսբուրգերի տրամաբանությունում: 

 

 
К.В. Шахбазян, академик Ю.Г. Шукурян 

 
Представление языков вычислений в одном классе событийных структур в  

логических языках 
 

Рассматриваются языки вычислений в одном классе моделей распределенных 
вычислений - однородных событийных структур - и их представимость в логических языках. 

Языки бесконечных конфигураций представимы в логике одноместных предикатов 
второго порядка.  

Языки доказывающих последовательностей представимы в логике Пресбургера, 
дополненной конечным множеством одноместных предикатов. 


