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1. Introduction. Our paper is concerned with one model for concurrency, sometimes qualified as
"true concurrency" model, because it takes of events and causality as fundamental [1,2,3]. Our goal is
to investigate languages of infinite concurrent processes in one class of flow event structures - infinite
homogenous flow event structures.

In this paper we are interested in two known formalisms of describing the behaviour of flow event
structures: configurations (i.e., sets of partial ordered events), and proving sequences (i.e., sequences
of events).

First, we prove that the language of infinite configurations of homogenous flow event structure is
o-regular. There exists an algorithm that constructs a Biichi [4] automaton representing m-language of
configurations for any homogenous flow event structure. Thus the language of infinite configurations
may be represented in monadic second-order logic.

Then we investigate languages of proving sequences in homogenous flow event structures. These
languages can be represented by a class of sentences of Presburger logic complemented with a finite
set of monadic predicates. There exists algorithm recognizing the emptiness of these languages. There
exists an algorithm that for each sentence of mentioned class constructs a homogenous flow event
structure representing the language defined by the sentence.

2. Languages of infinite configurations. In this section, we give basic definitions regarding flow
event structures (FES) and then study languages of configurations.

Definition 1 (flow-event structure )[3]. A flow event structure (FES) is S = (E, #, <), where

e E is a denumerable set of events,

e # — E x E is a symmetric conflict relation,

e <c E x E is an irreflexive flow relation.®

Definition 2 (configuration)[3]. A configuration of flow event structure S = (E, #, <) is a subset X
< E such that

e X is conflict-free,

e X does not contain a causality cycle, i.e., the relation < ,, = <% is an ordering (< “stands for the
X def

transitive closure),
e Forall e € X the set { ¢'[e’ € X A e’ < e} is finite,

e Each e € X is saturated in X, i.e., if ¢’ <e and ¢’ ¢ X then there exists ¢'’ € X such that ¢’’ <e and
e'#e.0

We present below the definition of a class of infinite flow event structures. We call these FES -
homogenous FES (HFES). This class will be the object of our study.

Let S = (E, #, <) be an arbitrary finite FES. Consider infinite sequence of FES's:

S1=(E, #1,<), Sy =(Ey, #y, <),y where fori=1, 2, ... (1)



E; ={¢; |e€E.},
#={(e;.eD | (eeD 4,

== {(ej.8{)| (e.e €],

that is each S ; 1s 1somorfic to S.

We assume that events of these FES are connected by conflict and causality relations in a regular
way. More precisely, let L, R, P be three finite sets of binary relations on E :

L={L!..1P}, 1! cExE,
R ={R!.. EP}, R!CExE,
P =Pl .. PP}, P! CExE,

where 0 <1< p.

By means of these relations we construct three infinite relation’s families that connect the events
from different FES's of sequence (1). The construction of these families is as follows.

SetforL! e Landi= 1,2, ...

1l = {{ej1.ei)|(e.e) e Iy 1<,
Y oleif12i
Each relation Lil will play the role of causal relation between the events of S; and S._, i.e., if (¢;_y, €;')

€ Lil then the event e, ; € E._, will be one of the causes of the event ¢’ € E..

Set for Rl e Rand i = 1,2, ...

Ri={Cined)|E ) eRY,

Each relation Ril will play the role of causal relation between the events of S, and S., |, i.e., if (e;, ,
e/) € Ri1 then the event e, ,, € E., | is one of the causes of the event ¢, € E..

Set for Pl e Pandi= 1,2, ...

ol {{{ei_l cel) (el o) | (e e e PYE 1<,
@iif 121

Each relation Pil will play the role of conflict relation between the events of S; and S,_, i.e., if (¢,

- -
¢) € Pi1 then the events e, € E; | and ¢;’ € E, are in conflict.
Definition 3 (homogenous flow—event structure). An infinite FES S_ = (E_, #_, <)) is called

homogenous flow-event structure (HFES) if it is generated by the quadruple (S, L, R, P), where S =
(E, #, <) is an arbitrary finite FES, L, R, P are finite sets of binary relations over E, and

E. = JE.
i)
“ Pl P el
~w=J {iUHLiUHRi ,

i=1

o« P
#. = olp! |6
i=1 1=1



Notations to be used throughout the paper are as follows.
Let Q < E be an arbitrary subset of E. We denote by Q; the corresponding subset of E,, i.e., Q; =

{ejle € Q).
Further we shall be concerned about languages of configurations of HFES. Let a quadruple (S = (E,
#,<), L, R, P) be given and HFES S_ = (E_, #_, <) is generated by the quadruple.

We consider the alphabet 2E and words over 2E, i.e., finite sequences of sets

QhQ%... Q" 2)
where Q' S E and the corresponding sequence (3):
1 -2
Q1.Q3, -+, Qus 3)

. . n .
where Q= {efe € Q' ¢ E.. Remark that | QicE - and each finite configuration of S_ can be
i=1

n .
uniquely represented as | JQ; . In this case, we say that the word Q1 Qz ... Q" defines a configuration
1=1

n .
UQiofS, .
i=1

We say that a set C(S_) of finite words over the alphabet 2Fisa language of finite configurations of
HFESS_ifC(S )= {Q'Q%...Q" | Q! Q?...Q" defines the configuration of S}

Theorem 1. For each HFES S __ there exists a finite state automaton over alphabet 2F accepting a
word Q1 ... QU iffit defines a configuration of S, .

We denote by C“(S_) the ©-language Biichi-recognizable by automaton B(S_) = (2 A, F, (0, D))

over 2E.
Evidently, o-word over 2F belongs to the -language C®(S ) iff for each n > 0 exists a n, > n such

that Q1 ...Q" defines a configuration of S + - This gives us the Theorem 2.

Theorem 2. The language C®(S ) of all infinite configurations of any HFES S __ is w-regular.

There exists an algorithm that constructs for any S_ a Biichi automaton B(S ) representing the o-

language C®(S ) of configurations. So the w-language Cc(S ) can be represented in monadic

second-order logic.

3. Languages of proving sequences. In this section, we study the languages of proving sequences,
i.e., linearizations of configurations.

Definition 4 (proving sequence for S_)[3]. Given S_ , a proving sequence in S_| is a (finite or

infinite) sequence o = a(1)a(2) ... of distinct nonconflicting events a(i) € E_ (i.e.,1#j = a(i) # o(j)

and —(au(i) # a(j) ) for all i, j ) satisfying
Tn Ve e<gal = dm<n (aim) =e) (e #alm)) A (alm) < aln). ¥

We denote by P(S ) a language of all infinite proving sequences in S_ . We shall say that the
language P(S ) is represented by S__ . It is known that P(S ) can not be accepted by finite automaton
[6].

We present below a logic L and a class of well-defined sentences of L. which describes the
languages P(S ) of proving sequences for arbitrary HFES S_ .



Given HFES S_, consider the alphabet E_ = {ej |e € E,j>0} . We shall represent an ®-word o =
a(0)o(1)..., where a(i) € E_ by the structure o = (», 0, +1, <, {q.} .. » V) - Here (w, 0, +1,<) is
the structure of natural numbers with zero, successor function and the natural ordering and q,, is
monadic predicate such as

q.=Tifi € o and o(i) = ¢ for some j, and

(i) is one-place function defined on o, i.e., y(i) =] if a(i) = ¢ forsomee € E , i.e., y(i) is the
index of event which stands in i-th position in o .

We allow also variables i, j for natural numbers, i.e., for positions of w-words and for indexes of

events. Terms are constructed from the constant 0, variables i, j by application of "+1" (successor
function) and y (index function). Atomic formulas are of the form qe(i), t=t,t<t,y()=t, wheret,

t" are terms. L-formulas are constructed from atomic formulas using the connectives v, A, -, — and
quantifiers 3, V acting on variables. Formulas without free variables are called sentences.

Consider two predicate families {q,(i, )} ..g and {u,(i, ))} . - They can be expressed by

fundamental notions of L as follows.

A (1) = de W ~ (w1 =1),

500 = 31 <in 6D A (V6D =D ®

The predicate q,(i, j) denotes the statement "ou(i) = e, The predicate u,, (i, j) denotes the statement
"there exists 1" <1 such that a(i") = ej".
Now we consider one class of propositional formulas. Each formula of this class generates a

sentence of L that determines an w-language representable in a HFES.

Let us consider a formula O(i, j) without quantification constructed from elementary statements of
the set

(L) lee B Uiu (,j+D[eeE, t=1,2,...}

using the connectives v, A, =, — and let G)*(i, j) be its disjunctive normal form.

Formula O, j) is well-defined if its disjunctive normal form ®*(i, j) satisfies the following
conditions:

¢ For each summand of formula ®*(i, J) there exists unique e € E such that elementary statement g

(i, j) is contained in the summand without negation. A summand of G)*(i, j) is called a e-summand if it
contains ¢, (i, ).

e If ® (i, J) contains u, (i, j + t) or —u, (i, j + t) then ® (i, j) contains e-summand too.

e If a e-summand contains —u,, (i, j + t) then each e-summand contains —u,, (i, j + t) and ¢'-

summand contains —u, (i, j — t).

o [f ®*(i, J) contains two e-summands 0, and 6, then for each u, (i,j +t) € 6, \ 0, thereisau,, (i, ]
+1) € 8,\ 6, such that ¢ -summand contains —u,, (i, j — t' + t), and each e'-summand contains —u,,,
(1,j+t' —1).

Starting from arbitrary well-defined formula (i, j), we construct now a correspondent sentence @
of logic L.

Let a well-defined formula ©(, j) be given and p = max {|t| such that u(i, j + t) enters O, j)}.
Consider the formula ®'(1) = 0'(i, 1) v @'(i, 2) v ... v O'(i, p), where O®'(i, k) is obtained from ®*(i,
k) by substitution of value T instead of all occurences of u(i, k —t) and —u(i, k — t) for k <t. Then we



get formulas ®'(i) and ®"'(i, j) from the formulas ®'(i) and O(j, j) by replacing all occurences of q(i,
1) u(i, j + t) by correspondent expressions (4). Finally, we construct the following sentence ®; of

logic L :

By =9 |8%D « 3 8%,
L 1[ (1) a (ljll]

Thus to each well-defined formula ©(1, j) we associate a sentence Oy of logic L. We call it sentence
of L generated by O(, j).
Theorem 3. Suppose L is an o-language over infinite alphabeth E = {e; |e € E, 1 € N}, where E

is a finite set. Then the following conditions are equivalent:
1) L is definable by a sentence © generated by well-defined formula.

2) L=P(S ) for some HFES S_ .

Corollary 1. The emptiness problem of w-language P(S ) is decidable.

Consider logic L, which differs from L by the following items:

e A finite alphabet E U {|} is considered instead of infinite E__ ;

e A predicate q is added such that q|(i) =T iff a(i) = | in the word a. = a(1)au(2) ...

¢ The function y is excluded. It is replaced by operation of addition of arbitrary natural numbers.

Thus L, is the Presburger logic with additional monadic predicates {q .}, g YV {q|}. Evidently, the
function y can be computed in L, .

Theorem 4. The w-language P(S ) of proving sequences for arbitrary FES S_ can be represented

by a sentence of Presburger logic extended by a finite number of monadic predicates.

Corollary 2. The emptiness problem is decidable for each sentence ©y, generated by well-defined
formula.
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4.9, Cwhpuqui, whwuntdhlnu 8nt.Z. Cnipnipjui

Znupujpt yuwwwhwpujhtt jurnigyusputph hwogupljubph (kgniukph
npudwpwiwlub tkpjuyugnidp

Yhunnwuplynd B pwpupws hwdwlwpgbiph dnpbjubphg dbyh’ hwdwubn ww-
wnwhwpwihtt junnigquspubtph, hwyquplutph (kgqnitbpp b tpubg npudwpubtuut
ubkpyuyugnidp:

Uwwgnigynid E, np wbdbpe Ynudhgnipughwibph (Eqniubpp tbhpluyugdnid Gu
Ukjunbknwuh Epypnpny jupgh ypinhjuwntbph npudwputinipiut dke:

Uwuwgnignn hwonppuljunipniiubph (Egniubpp tkpjuyugynid tu Jpewynp
Ukjunbknuuh ypbnhljwwnubpny punyuyugws Mpkupnipgbph npudwpwtinipiniund:

K.B. lllax6a3sn, akagemuk 10.I'. llykypsan

HpeIICTaBJ'IeHI/Ie SI3bIKOB BBIYUCJIEHHH B OTHOM KJIacce COOBITHHHBIX CTPYKTYp B
JIOTHYECKHUX A3bIKAX

PaccmarpuBaroTcsi SA3bIKM  BBIYMCICHUHM B OJHOM KJacce MOJAENEH pacrnpeieiaeHHbBIX
BBIYUCJICHHUH - OJTHOPOTHBIX COOBITUHHBIX CTPYKTYP - M X MIPEACTABUMOCTD B JIOTHUCCKHUX SI3BIKAX.

A3pikn O€CKOHEUHBIX KOHGUTYpAIUid TMPEACTABUMBI B JIOTUKE OJHOMECTHBIX IPEINKATOB
BTOPOTO MOPSAKA.

SI3bIKKM  IOKA3BIBAIOIIMX TIOCIENOBATeNIbHOCTEH Tpe/cTaBuMbl B Joruke IlpecOyprepa,
JIOMTOJTHEHHOM KOHEYHBIM MHO>KECTBOM OJHOMECTHBIX ITPEAUKATOB.



