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Let A be a selfadjoint (bounded) operator, acting in a Hilbert space H, L be a subspace in H and
P, be the orthogonal projector onto L. Any operator in H generates a sesquilinear form (Af,g) on
H x H. If we consider this form only for elements f,g belonging to L, we arrive at the operator
Ao = P, A | L said to be truncated. First we describe the spectrum of a truncated operator in a particular
case, then apply it to the oscillation’s investigation of constrained mechanical systems.

Let u be a nonnegative locally finite measure with supp 4 € R, M be the multiplication operator
by the independent variable in the (complex) space L%, P,_; (n € N) — the set of polynomials Q on
one real variable, satisfying the condition deg @ < n — 1 (we suppose that any P,_ is a subspace of
L,Zl, e.g. u has compact support and an infinite number of growth points). The subspace P,_4,
evidently, is not invariant under M and we consider the restriction of the form (Mf,g) on P,_;.

Proposition 1. The spectrum of P, M | P,_; coincides with the roots {x,} of then — th
u — orthogonal polynomial P, and the corresponding eigenelements are the Lagrange fundamental
polynomials constructed by these points.

Proof. Let

be the Lagrange fundamental polynomials, constructed by the points {x;}. Denoting
n
wz)=]lz-s).

one arrives to the formula




We prove that {l,,} are u — orthogonal. Indeed,

o iy w (z)
(s Uk) f (@) = (Tm) W (z1) (x — 24) (T = Tpm)

as the first term under the integral sign coincides up to a scalar multiplier with P, and second term at

p(dz) = 0,

m # k is a polynomial of degree n — 2. If m = k, one gets

/l2 ) =X, >0,

where the last numbers are known as weights or Christoffel numbers. Expanding polynomials p, q €
P,_1 according to the Lagrange interpolation formula

i plzk) Uk (x), ¢ (£} = Z q(zm) lm ()

k=1 m=1

we arrive to the formula
=D ep (z1) ¢ ()
k=1
established in the theory of numerical calculations ([1], formula 3.4.1) as an approximative eguality

[ 1 (@) (dz) thm

Note that this equality is exact for any polynomial R with degi R < 2n — 1.
Then

(2¢(2) U (7)) = (2 = 2m) 4 (2) , I (2) + 2 (¢ (2) , I (7)) = T (¢ (2) , I (7)),
implying
(Ilk (CL‘) 3 lm (SF)) = Ak$k5km

(6 1s Kronecker’s delta) and
P'pn_] Ml = g5l 0
For any set S of different real numbers {s;,s,,--,s,} and a set A of positive numbers
{A1, Ay, -+, A} one can construct a space of A — orthonormal on S polynomials. Let introduce in the
space F(S) of all functions defined at least on S a sesquilinear form by the formula

uw=§aﬂmﬂﬁi (1)

This expression defines a scalar product on P,,_;. Note that for any two functions f, g € F(S)
(f’g) - (f!a) ]

where

=§Hth



is the Lagrange interpolation polynomial for f. Applying to the monomials {x™}§~* the Gram-Schmidt
orthogonalization process we arrive to the set {p(x)}2~! of orthonormal polynomials (with positive
coefficient of the leading term).

We seek an explicit formula forp,_; (x). To this end note that the function

w ()

Tm (@) = Pn1 (2) — o,

where w(x) is the product, corresponding to the points {sq,s,,:**,S,}, is a polynomial of degree
2n — 2,80

[ 7 (2) (d2) = At (3m) ' (5m).

The integral may be calculated, decomposing the fraction

w(x)

X — Sm

as follows

w (z) _ Pn1 (z)
T —Tm Hn—1

+ gu-2 (),
where p,,_, is the coefficient of x™ ! in p,,_; (x) and deg q,_, < n — 2. Then

[rm@itan) = [ (B 4 g2 (0)) s (o) e00) =

n--1

and

Pn-1 (Sm) == (2)

The last equality implies

1 & 1
et [} = iz 3
Pu-1 (Z) i J; o (o) * (3)
The equation
Pn-1(z) =0 (4)
is equivalent to
Pi(@)
Pr ()
As
n— . - 1
Pn1 (2) _ % es(p 1(»’6))
pa(x) o=\ Pa(z) ) T—8m
we arrive at

2, Pn-1(5m) ' 1 -
m=1 P’n (Sm) T — Sn




To investigate this equation, we note that the coefficients p,,_1(S,,,) /P n (Sm) according to formula (2)
are positive, therefore

Pn-1 () I: - Pno1(Sm) 1 _.
( Pn (€) ) mz::1 j (z — Sm)z it (6)
As
L R ) (z) LS
z—t00 P, (Q;)
and

Pn—1 (»75) .

z—s.F0 p, (CL‘) oo

equation (4) has n — 1 simple roots {ay, 05, ***, 0,1}, alternating {s;, S5, -+, S, } (details in [2], ch. IV,
4.3).

These formulas (in particular, formula (5)) may be applied to investigate so-called intermediate
problems. As it is known (cf. [3], ch. III ) an oscillating system with n degrees of freedom is described
by a selfadjoint matrix A, acting in a n- dimensional Hilbert space H. The oscillation frequencies are
equal to eigenvalues of A and the eigenelements define the directions of so-called normal oscillations.
If the system is constrained, its behavior is described by the truncated operator and oscillation
frequencies are shifted.

The eigenvalues of any matrix can be calculated by Courant-Fisher minimax principle. It
provides a two-sided estimate for shifted frequencies. We propose below an explicit formula for
eigenvalues and eigenelements and resolve the inverse problem.

As any selfadjoint operator is an orthogonal sum of selfadjoint operators with cyclic vectors, we
assume that A has a cyclic vector, i.e. its spectrum SpA = {s;,S,,*, S, } is simple. The constraint will
be taken as a subspace L defined by the equation

QT+ 022+ + Tz, =0 (7)
in the coordinate system {e; }} consisting of eigenclements of A.
Proposition 2. The spectrum of A, = P,A|L coincides with the root
{01,0,,+,0,_1}, Of equation

2, ol \
2 =0. (8)

L — 8

Proof. Without loss of generality we suppose that no coefficient {a,}} is equal to zero. Define
the weights {A;}} by the formula



Let U be an operator from H into P,_; putting in correspondence to the element e, the
polynomial a,w' (si) I (x) and expanded linearly onto H. As

(k; akek) Z,akl (%) Ik (%) = pn—1Dn-1 (),

we get UL = Pp_1 © {P_1} = Pn—5. So the spectrum of the matrix A, = P; A |L coincides with
the roots of p,,_; and we must resolve the equation
n 1 n
e a )by U = O
k; WY ; ol (1) U () =
As
w (z)
lk T) =
@ W ()
(z- sgu>' (s

we get finally (8).0
The same equation may be rewritten as

det (Ap — zI)
e (10)
The eigenelements of truncated matrix A, are equal to
fi=3 =2 Tl (s~ o) 11]
pR= B e Sk — 0j).
7 £t Tt (Sk) 11 k J ( )
i#j
Direct calculations yield another formula
= @
fi =consty —E ¢ (12)
k=1 73— Bk

We suppose now that two sets {1, 05, ", 0n_1}, {S1,S2,**, S}, of alternating real numbers are
known and seek the subspace L, generating the shift {s,,s,, -+, s,} = {01, 02, *, 0,-1}. This problem
may be resolved by the following method.

Note that

Prt (%) = fin_1 g’ (z - 0;)

and

From formula (2) it follows that

n—1 n—1

i H (sk = 03)% = A’ (5m) [] (Sm — 05) =0, m=1,2,-- -, n. (13)

= =1



If we define {A,,}T from the last equalities, formula (9) permits to recover (up to a common factor and
specific phase multiplier) the coefficients {a,}, hence the subspace L.
The coefficients {a;} may be found directly, if we consider equation (8) as a system of linear

equations

—=0,5=1,2,---,n— 1.
=t Oy — 8k

Introducing vectors 1; = {(g; — s1) 7%, (67 — s2) 7', -, (6 — 5,) ™'}, we find {a,} as the outer product
of {r;}i "

Comparing (11) and (12) we get

1)

" ‘I—:"[l (Sk o U.t')
lak|” = const*= .
I1 (sk — s;)
el
i#k

These formulas may be applied also in the case, where A is an infinite- dimensional Hilbert space
selfadjoint operator, belonging to the Schatten trace class. As it is well known (cf. [4], ch. IV) for any
such operator the sequence of eigenvalues {s; } satisfies the condition

o
Z !Sk’l < 00,
k=1

the infinite product

[TA-z2s), zeC
k=1

converges to an entire function D, (z), said to be the characteristic determinant of A. The roots of
equation D, (z) = 0 coincide with s; ! and one has the equality

Lk (] m= T}Lngodet.(éik — z(Aep,€;)), 1,k=1,2,--- ,n. (14)

Easily can be seen that if coefficients {a;}{°, defining the subspace L, belong to [2, the series

Flz)=3 1%

k=1 T — Sk

converges for any non-zero x,x # Si, k € N to a continuous function. This convergence is uniform on
any segment [a, b] which does not contain the points 0 and {s;}. The same is true for the (formal)
derivative

so F is decreasing. Let x,, be a root of the equation F(x) = 0 and e- a sufficiently small positive
number. As F(x,, —€) > 0and F(x,, + €) < 0and

Fy(z) =)
k=1

|ai|?
r — Sk



converges to F(x), we get Fy(x,, —€) > 0 and Fy(x,, + €) < 0 for sufficiently large N, hence the
roots {xN} of the equation Fy(x) = 0 tend to x,, as N — co. According to formulae (10), (14) the non
-zero terms of the spectrum of A, coincide with the roots of the following equation

00 2
e S
Sk

k=1L —
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L. Q. Qunpqui
Zuwunjwd oykpuwwnnph uykuph tjwpuqpnipinit b dhpwuljjw) jnughputp

bPuptwhwdwnis oybpwwnnph' ny htquphwiuwn Eipwnwupwsénipjut YJpu vwhdwbiu-
thwldwt uyklunpp tjupuwgpynd £ gqnignpnjus oppngniiwy puquutnudutph dhongny:
Uunwgws tjupugpnipjniit ogrnugnpdynid £ nnuwnwtnnujut hwdwlwupgp juwbpny
Juoljwunbint hknmbwipny wnwowgus hwdwhinipnitubph wknuownpdp npnokjnt hwdwnp:
Lowsqws k| twlb hwjunupd' hwdwpnipniitiph mbnuowpdny Juwybkph punypp npnobjnt
Jutinhpp:

JI. 3. I'eBopksiH

OnucaHue CeKTPa yCe4eHHOT0 ONEePaTopa U NPOMeKYTOUYHbIE MPOGJIeMbI

CriekTp orpaHMuY€HUs CaMOCONPSIKEHHOTO ONEpaTropa Ha HEMHBAPUAHTHOE IOANPOCTPAHCTBO
OIMCBIBAETCS MPHU MOMOIM ACCOLMUPOBAHHBIX OPTOrOHAIBHBIX MOJUMHOMOB. IloiydeHHoe onucaHue
MPUMEHSIETCA s ONpeAeTeHUsl CIIBUTAa YacTOT KojieOaTeIbHOM CHUCTEMbI NMPHU HAJIOKEHUU CBS3CHl.
Pemrena Taxoke oOpaTHast 3a/1a4a ONpeeIeHUs] XapaKTepa CBsA3el IMpy MOMOIIH CJIBUTa YaCTOT.
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