Академик К.Г.Адамян, М.Г.Агаджанян

Применение функциональных проб для оценки адаптации сердечно-сосудистой системы к статической деятельности

(Представлено 25/V 2001)

Адаптационные возможности организма являются одним из фундаментальных свойств живой системы и находятся в центре внимания многих исследователей [1,2]. В этой связи изучение сложного процесса приспособляемости сердечно-сосудистой системы к повышенным запросам организма в условиях нормы и патологии является одной из основных задач современных функционально-диагностических исследований [3,4].

В спорте с его стрессорным воздействием на молодой здоровый организм эти вопросы особенно интересны. Необходимым условием углубленного изучения и оценки функционального состояния сердца спортсменов является применение нагрузочных проб, дающих представление о срочной адаптации к физическим нагрузкам. Ведь спортсмен приходит к уровню долговременной адаптации через длинную цепь срочных адаптационных реакций.

В настоящем исследовании проведено изучение влияния статической нагрузки на организм с помощью проб с изометрической нагрузкой и с натуживанием.

Группа исследуемых состояла из 47 спортсменов 18-23 лет, занимающихся тяжелоатлетическим спортом (Т/А), и 20 контрольных лиц того же возраста, не занимающихся спортом. Проба с изометрической нагрузкой заключалась в сжатии кистевого динамометра левой рукой в течение 3 мин с силой в 50% от предельной. Проба с натуживанием производилась по общепринятой методике, заключающейся в 20-секундном натуживании. Производилось эхокардиографическое (ЭхоКГ) исследование до и после проб с изучением конечно-диастолического (КДО) и конечно-систолического (КСО) объемов, ударного объема (УО), минутного объема сердца (МОС), фракции

Эхокардиографические показатели при пробах с изометрической нагрузкой и натуживанием (M±m)

	Показатель					
Группа	КДО,	КСО,	УО,	MOC,	ФВ,	ОПСС,
	МЛ	МЛ	МЛ	МЛ	%	дин.с.см ⁻⁵
Изометрическая нагрузка						
Т/А, до	97.42	37.45	62.38	4430.2	63.02	1823.3
	±1.54	±1.56	±2.36	±126.8	±2.35	±45.5
после	101.39*	30.15*	70.84*	6358.5*	70.72*	1543.1*
	±1.21	±1.62	±2.15	±139.5	±2.51	±24.6
Контроль,	110.20	41.38	69.25	5037.3	62.55	1376.2
до	±1.92	±2.23	±2.11	±291.2	±1.12	±55.2
после	113.42	49.55*	62.53*	6634.4*	55.03*	1567.5*
	±2.13	±2.16	±2.4	±188.6	±1.08	±62.7
Натуживание						
Т/А, до	105.34	38.04	63.75	4338.4	60.83	
	±2.62	±0.66	±1.91	±136.84	±0.58	
в конце	70.03*	26.63*	39.41*	4431.1	55.19*	
	±2.86	±1.55	±2.84	±291.20	±2.24	
после	108.54	38.04	69.09*	5093.6*	64.65*	
	±3.30	±0.19	±2.07	±139.85	±0.55	

выброса (ФВ), общего периферического сосудистого сопротивления (ОПСС) и показателя соотношения скоростей раннего и позднего наполнения Е/А.

При выполнении пробы с изометрической нагрузкой как в группе спортсменов, так и в контрольной группе отмечается увеличение МОС и КДО, однако рост этих показателей выражен в большой степени в группе спортсменов (см. таблицу). В контрольной группе отмечается также увеличение КСО и ОПСС в отличие от группы тяжелоатлетов, где эти величины, наоборот, уменьшаются. Снижению ФВ и УО в контрольной группе протибостоит увеличение этих показателей в группе спортсменов, у которых улучшается и диастолическое наполнение.

Таким образом, при выполнении изометрической нагрузки у спортсменов увеличение МОС происходит преимущественно за счет возрастания УО, в отличие от контрольной группы, где на фоне снижения УО отмечается резкое учащение частоты сердечных сокращений. Увеличение ФВ у спортсменов сочетается с уменьшением КСО и понижением ОПСС. Подъем АД при статической нагрузке обычно сопровождается некоторым повышением ОПСС, особенно у больных. Однако у тяжелоатлетов ОПСС снижается, что напоминает реакцию на динамическую нагрузку. У спортсменов, в отличие от контрольной группы, происходит улучшение диастолической функции, выражающееся в увеличении допплер-ЭхоКГ-показателя трансмитрального кровотока Е/А (1.70±0.05 до 1.88±0.07 и 1.60±1.03 до 1.63±1.1 соответственно).

По мнению Фишмана и соавт. [5], величина ОПСС при статической нагрузке зависит от факторов. Перфузия изометрически сокращенной скелетной взаимодействия ДВУХ мускулатуры зависит от баланса между локальными метаболическими изменениями, вызывающими релаксацию сосудов, и степенью повышения внутримышечного давления, которое, в свою очередь, блокирует кровоток. По их мнению, эффект мышечной компрессии на сопротивление сосудов намного меньше метаболической реакции. В работающих мышцах скапливаются сильные вазодилятаторы, и их влияние, ведущее к снижению ОПСС, может быть весьма весомым в зависимости от объема мышечной массы, вовлеченной в изометрическое напряжение. Необходимо отметить, что афферентные волокна, имеющие нервные окончания в соединительнотканных оболочках мышц, с большой чувствительностью отражают метаболические изменения. В этом вопросе, по нашему мнению, имеет значение и порог чувствительности к этой афферентации в зависимости от степени тренированности организма. Тем не менее, величина ОПСС в покое у тяжелоатлетов выше, чем в контрольной группе, что является следствием долговременной адаптации к изометрическому напряжению.

Статической деятельности присуще и состояние натуживания, являющееся составным элементом спортивной деятельности при занятиях рядом видов спорта. Интересно отметить, что проба с натуживанием была предложена еще в 1704 г. итальянским врачом Антонио Вальсальвой для диагностики ушных заболеваний. При выполнении этой пробы в реакции сердечно-сосудистой системы отмечается несколько фаз. В начале натуживания передающееся грудной аорте повышение внутригрудного давления вызывает подъем АД, а затем уменьшение венозного возврата и падение АД, что, в свою очередь, вызывает рефлекторное учащение сердечных сокращений и сужение периферических сосудов. При окончании пробы происходит резкое падение внутригрудного давления с последующим возрастанием УО, МОС и АД и замедлением сердечных сокращений.

ЭхоКГ- данные при пробе с натуживанием ярко демонстрируют реакцию сердца. Как следует из таблицы, в конце натуживания все исследуемые параметры ниже исходных. После натуживания идет восстановление с превышением исходных значений со стороны КДО, УО и ФВ. При этом несмотря на значительное уменьшение УО при натуживании МОС у тяжелоатлетов остается на исходном уровне, даже несколько превышая его, а затем увеличивается больше исходного уже после окончания натуживания.

Резкие колебания внутригрудного давления имеют как отрицательную, так и положительную стороны. Так, натуживание у больных может вызвать нарушение мозгового кровообращения и обструкцию выносящего тракта левого желудочка при выраженной гипертрофии. Однако у спортсменов реакции сердечно-сосудистой системы при натуживании

происходят более плавно, не вызывая никаких отрицательных воздействий. Положительные стороны натуживания, по мнению некоторых авторов [6], состоят в следующем. Вследствие повышения внутригрудного давления уменьшается градиент давления для изгнания крови из левого желудочка, в результате чего снижается и постнагрузка, что, уменьшая стимулы для развития гипертрофии левого желудочка, препятствует этому процессу. Авторы считают, что при наличии повышения АД и гипертрофии левого желудочка включение коротких маневров Вальсальвы может уменьшить трансмуральное давление в левом желудочке, что будет препятствовать дальнейшему развитию имеющейся гипертрофии.

хорошо дозируемые силовые упражнения с Таким образом, кратковременным натуживанием следует рассматривать как ценное средство стимуляции приспособительных сердечно-сосудистой системы, тем более если учесть, (изометрические) нагрузки сопровождают как бытовую, так и трудовую деятельность человека. В последние годы вырос интерес к упражнениям в изометрическом режиме в массовой физической культуре. Изометрические нагрузки наряду с динамическими с успехом применяются при ряде заболеваний сердечно-сосудистой системы, и даже есть попытка их применения на стационарном этапе лечения больных острым инфарктом миокарда. Они оказывают благоприятное нормализующее и тонизирующее воздействие на различные функции человеческого организма и могут широко применяться и в профилактических целях. Применение же проб с изометрической нагрузкой и с натуживанием может дать ценную информацию о функциональном состоянии как здорового, так и больного организма.

Институт кардиологии МЗ РА Армянский государственный институт физической культуры

Литература

- 1. *Агаджанян Н.А*. Материалы VIII междунар. симп. "Эколого-физиологические проблемы адаптации". М. 1998. С.2-6.
- 2. *Меерсон Ф.З., Пшенникова М.Г.* Адаптация к стрессорным ситуациям и физическим нагрузкам. М. Медицина. 1988. С. 19-21.
- 3. *Адамян К.Г., Оганесян Л.С.* Современные методы функциональных исследований сердечно-сосудистой системы. Ереван. 1990.
 - 4. *Мартынов А.И.*, *Степура О.Б.* Рос. мед. журн. 1998. N 2. C. 49-54.
- 5. Fishman E.Z., Embon P., Pines A. Tenenbaum A. et al. Am. J. Cardiol., 1997. Feb.1. V.79 (3). P.355-359.
 - 6. Haykowsky M.J., Gillis R., Quinney A. et al. Am.J. Cardiol. 1993. V. 72. P. 1045-1054.

Ակադեմիկոս Կ.Գ. Ադամյան, Մ.Գ. Աղաջանյան

Ֆունկցիոնալ փորձերի կիրառումը ստատիկ գործունեության Նկատմամբ սիրտ-անոթային համակարգի հարմարվողականության գնահատման համար

Ուսումնասիրված է ստատիկ գործունեության ազդեցությունը մարզիկների և չմարզվող մարդկանց օրգանիզմի վրա։ Որպես ֆունկցիոնալ փորձեր կիրառվել են իզոմետրիկ բեռնվածություն և լարում` շունչը պահելով հանդերձ։

Ցույց է տրված, որ չափավորված, կարձատև լարումով ուժային վարժությունները կարող են հանդիսանալ կարևոր միջոց ստատիկ բեռնվածությունների նկատմամբ սիրտանոթային համարգի հարմարվողականության խթանման համար։