Г.Г. Бабаян, А.С. Дегоян, И.Р. Овакимян

Модульный принцип унификации в построении структуры автоматических роторно-конвейерных линий

(Представлено академиком Г.Л. Арешяном 20/Х 1999)

Одним из важных направлений повышения качества сложных систем - автоматических роторных линий и роторно-конвейерных (АРЛ и АРКЛ) линий, снижения их себестоимости и сроков подготовки производства является применение типовых технологических и конструкторских решений. Они основываются на принципах унификации и стандартизации, устранении необоснованного многообразия типов и конструкций изделий и деталей, их форм и размеров, марок материалов. Унификация проводится путем агрегатирования, компоновки изделий из ограниченного числа уже освоенных в производстве сборочных единиц и деталей.

Развитие унификации идет в трех направлениях:

- 1. Выбор наиболее эффективных технических путей обеспечения высокого конечного результата путем внедрения агрегатирования и блочно-модульного построения изделий, агрегатов, машин, уменьшения номенклатуры комплектующих изделий.
- 2. Совершенствование организации работ по унификации и управлению, разработке стандартов, ограничению номенклатуры изделий по типам, параметрам и т.д.
- 3. Развитие научно-методической базы для конструирования машин, линий с широким применением унификации агрегатирования, взаимозаменяемости составных частей, исользованием методов функционального технико-экономического анализа (ФТЭА), стандартизации и унификации функций элементов, узлов ит.д; использование типоразмерных и функциональных рядов, блочно-модульного конструирования; разработка комплексов и систем машин.

Современная унификация, несмотря на значительные успехи, все еще недостаточно эффективно решает эти важные вопросы. Анализ конструкций роторных линий, в частности АРЛ и АРКЛ, показал, что в них для одних и тех же функций использованы узлы различного исполнения.

Проработка конструктоских решений выявила возможность значительного сокращения номенклатуры основных узлов АРЛ иАРКЛ с использованием методов модульной унификации узлов и систем при проектировании разработанной нами комплексной автоматизировнной роторной системы (КАРС - 214). Это позволило сократить затраты на их изготовление в 8 раз (таблица). Наш опыт показал, что результаты технической и экономической унификации тем выше, чем раньше начато применение ФТЭА, использование которого позволяет значительно сократить номенклатуру основных узлов АРКЛ.

Модульная унификация узлов и систем при проектировании "KAPC - 214"

Наименование узлов	Число узлов до унификации	Число узлов после унификации
Вибробункер загрузочного устройства	16	1
Диски питания	14	3
Ротор разгрузки с ячейками	3	1
Цепной конвейер	2	1
Натяжные звездочки	7	2

Контрольные датчики	15	1
Вибролотки	16	1
Спутники приспособления	24	1
Инструментальные блоки	12	1
Средства управления	4	1
Средства энергоснабжения	4	1

Системный подход к проектированию сложных технических объектов типа АРКЛ при помощи ФТЭА дает возможность по-иному подойти к принципам получения информации. Он позволяет выявить наличие унифицированных функций, с одинаковым физическим смыслом, но с различными количественными показателями. Функциональная унификация создает возможность применения унифицированных функциональных модулей, отражающих структуру создаваемой системы, наличие функциональной связи ее элементов.

В иерархическом модульном построении унифицированных систем применяется принцип единообразия элементов для создания различных машин, линий, агрегатов. При этом особенно важны: системность разработки типоразмерных, параметрических и функциональных рядов модулей; оптимальность для достижения системы с наивысшим экономическим эффектом; перспективность существующих и предлагаемых научных достижений.

Некоторые свойства функциональной структуры АРКЛ (сложность, иерархичность, взаимосвязанность элементов и др.) являются материальным вплощением выполняемой функции Развитие модуля по горизонтали создает типоразмерные, параметрические функциональные ряды, тогда как его развитие по вертикали отражает многофункциональность.

Принципы функциональности и системности требуют выявления четной структуры объектов унификации, установления их функциональной взаимосвязи, обеспечения взаимозаменяемости и согласованности. Такой подход позволяет выявить методологию образования структур разных по своему назначению модулей и теоретически обосновать иерархическую модульную концепцию построения сложных технических систем, в том числе АРЛ иАРКЛ. Функциональная унификация, наряду с узловой нормализацией и стандартизацией деталей, позволяет:

- 1. применять ограниченные типоразмерные ряды модулей АРКЛ с множеством функций;
- 2. предусмотреть порядок согласования и соединения модуля с устройствами, выполняющими совместную работу элементов системы разных уровней;
- 3. распространить принципы модульной унификации практически на все элементы АРКЛ различных уровней иерархии, что приведет к сокращению сроков проектирования и изготовления роторного оборудования; уменьшению числа типоразмеров АРКЛ, необходимых для полного техического перевооружения местного производства массовых изделий; созданию серийного производства основных модулей на специализированных предприятиях со снижением себестоимости АРЛ, АРКЛ и сокращением сроков изготовления; повышению их качества и надежности; увеличению производительности при минимальных затратах существующего роторного оборудования за счет подключения новых модулей.

Проведение ФТЭА предполагает использование модульного принципа: 1) при построении дескрипторного (смысловой доминанты) словаря функций и типовых функциональных моделей; 2) при формировании алгоритмов и процедур проведения ФТЭА для разных областей применения объектов, целей и т. д.; 3) при создании информационного обеспечения этих работ; 4) при разработке математического обеспечения ФТЭА.

При построении дескрипторного словаря функций и типовых функциональных модулей исходные модули могут формироваться на основе операций, состав которых, по мнению Р. Коллера [2] ограничен всего лишь 12 разновидностями (действия - противодействия) прямой и обратной напрвленности.

Элементарные операции характерны для технических систем и ориентированы, в большей мере, на энергетические и, в определенной мере, на материальные потоки. Процессы, происходящие с информационными составляющими, а также в технических и организационных системах могут служить основой построения типовых функций. В их числе отметим: преобразование вещества (изменение

структуры, состава и свойств), энергии (взаимопереходы, трансформация), информации (обработка, преобразование формы представлений); хранение вещества (задержка поступления во времени), аккумулирование энергии (накопление информации, запоминание); управление (веществом, энергией, информацией) для кординации во времени и пространстве [1].

Использование модульного принципа при формировании алгоритмов и процедур ФТЭА реализуется с помощью так называемых организационных модулей (совокупности логических, расчетных и графических приемов) определенной целевой ориентации и уровня формализации, с кадровым, техническим и информационным обеспечением.

Комбинация стандартных модулей позволяет реализовать процедуры любой сложности с минимальными затратами. В качестве технических средств, предусматриваемых в организационных модулях, используется современная вычислителная техника и программное обеспечение.

Таким образом, модульный принцип унификации и стандартизации при построении структур АРЛ и АРКЛ является основным фактором повышения качества этих сложных систем, снижения их себестоимости и сроков подготовки производства.

"НПО" Нейтрон

Литература

- 1. Миркин Б.Г. Проблема группового выбора. М.: Наука, 1984. 254 с.
- 2. Koller R. Konstruktions methode für den Mashinen Gräte 0 und Apparutebau Spriner-Verlag. Berlin, Heidelberg New York. 1976. 191 S.

Հ.Հ. Բաբայան, Ա.Ս. Դեղոյան, Ի.Ռ. Հովակիմյան

Միօրինականացման մոդուլային սկզբունքը ավտոմատ ռոտորային գծի կառուցվածքի կազմավորման մեջ բնութագիրը ուռուցքային աձի դրդումով

Բարդ տեխնիկական համակարգի՝ ավտոմատ ռոտորաային գծերի որակի բարձրացումը, նրանց ինքնարժեքի և արտադրության նախապատրաստման ժամկետի նվազումը հանդիսանում են տիպային տեխնոլոգիական և կոնստրուկտորական որոշումների կիրառում, որոնք հիմնվում են միօրինականացման և ստանդարտացման վրա՝ չհիմնավորված բազում տեսակի և կառուցվածքի արտադրատեսակների, դետալների ձևերի և չափերի, նյութերի տեսակների վերացմամբ։

Գործառնական և համակարգային սկզբունքները պահանջում են վեր հանել միօրինակացված օբյեկտների պարզ կառուցվածքը, հաստատել նրանց ֆունկցիոնալ փոխադարձ կապը, ապահովել փոխադարձ փոխանակումը և համաձայնեցումը։ Այդպիսի մոտեցումը թույլ է տալիս ի հայտ բերել տարբեր նշանակման մոդուլների կառուցվածքի ձևավորման մեթոդաբանությունը և տեսականորեն հիմնավորել մոդուլային ստորակարգման մտահղացումը՝ կառուցելու համար բարդ մեքենաներ և գծեր։ Մոդուլի ֆունկցիոնալ կառուցվածքի հիման վրա հեշտ է կազմել նրա օրգանական կառուցվածքը՝ օգտվելով մեքենայի և մեխանիզմի տեսության մեթոդներից։