
ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՍԻԱՅԻ ԶԵԿՈՒՅՑՆԵՐ
ДОКЛАДЫ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Том 99 1999 N° 4

PHYSICS

УДК 539.1

A. Zh. Muradyan, Н. L. Haroutyunyan

Coherent Accumulation of Modulated Probability Amplitudes: 
Scattering of the Atoms in the Field of Counterpropagating Light Pulses:

(Submitted by Academician of NAS RA D.M.Sedrakyan 11 /XII 1998)

Scatterin of an atomic beam in the field of resonant standing wave, composed by
the reflection of nanosecond scale laser pulses from the immovable mirror, shows 
anomalous regularities, particularly, high asymmetric angular distribution (**3). The 
obtained regularities didn’t pack up into the established at that time theoretical picture 
about the scattering of atoms in the field of standing wave (4՜8). It impeled a new rise of
interest to the problem of coherent multiphoton scatterin of atoms in the laser radiation
field. After the persistent quest it has been shown that one can explain qualitevly the 
observed asymmetries, if admit the atom to be initially in the mixture state of ground and 
excited energy levels, which, in addition, has different values of translational motion 
momentum (8). Just resembled situation is implemented for experimental conditions (l*3),

Laser radiation

Fig. 1. The scheme of experiment

where an atomic beam propagates on some distance L from the surface of a flat mirror 
(Fig. 1), and, because of this distance, the standing wave is formed only after the time 
(from the initial moment of falling of the first wavefront on the atom). During this time 
the atom interacts only with a travelling wave, which creates the coherent connection 
between atomic energy levels (mixture state). And the values of momentum for these 
energy levels are distinguished by one photon momentum hk (k is the wave number).
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But actually the third period comes in the conditions of expenmentsf1՜3) after 
standing wave formation, when there is again one travelling wave in the atom’s place. It 
is the ‘ tail wave, which reflects from the mirror and propagates along the direction, 
opposite to the initial one. The mentioned time period has not been taken into account 
formerly, probably supposing that one -photon scattering process can't noticeably have 
an influence on the multi-photon scattering of the atoms in the standing wave field. In the 
present paper on the base of the simplest model, we show that in the third final stage of 
interaction a new type of quantum-mechanical coherent phenomenon takes place which 
we call Coherent Accumulation of Modulated Probability Amplitudes(CAMPA) and 
which entirely changes the angular distribution of the atoms compared to the end of the 
interaction with the standing wave. The matter of phenomenon is the following: after the 
interaction with the standing wave the translational motion wave function, as it is well 
known (4՜8), can be presented as a family of definite momentum states with (/’)= step, 
both, for ground and excited atomic energy levels. The probability amplitudes for 
neighborhood states have different signs, and it is the first principle cause for the presen
ting phenomenon. Moreover, a displacement hk exists between level’s momentum 
distributions. So, the probability amplitudes with the different signs are intercovered with 
the new hk displacement in the momentum distribution at the one-photon transitions 
between the energy levels in travelling wave. This different sign amplitude superposition 
strongly suppresses the amplitudes in the inner region of momentum distribution. 
Essentially, the amplitudes become different from zero at the boundary values of these 
distributions. As a result, due to the interaction with the travelling wave the quantum 
mechanical translational states collect around the certain values of momentum for ground 
and excited state atoms separately.

Let us consider the quantum-mechanical behavior of an atom in the resonant field of 
the coherent wave, which falls and reflects from a mirror at a rest f1՜3). The laser 
radiation and also the translational motion of atomic beam will be represented as a one 
dimensional flat wave propagating near the intercrossed direction. The Hamiltonian ol 
the atom in dipole approximation

H = H0-dE(tfz) (1)

comprises the Hamiltonian for the free atom and the interaction part dE(t.iz>) . The 

center of mass kinetic energy can be omitted in Hamiltonian due to the small interaction 
time, when the atom velocity variations are small in comparison with the thermal 
velocities, and the distance passed by atom along the wave direction is less than the 

wavelength. The dipole moment operator d and the electric field E{t^z} are presented 

in scalar form. Exact atom-field resonance also is assumed. The atom momentum is 
conserved in laser wavefront plane and so the corresponding part ot atomic wave 

function will not be written:
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T = ^AJt,z)<pJfA) + BJj,z)i//m(r,t) 
m«-1

(2)

where (pm and ^/n, are ^e stationary wave functions of free atom in the ground 

and excited levels correspondingly, r is the coordinate of the atom center, 
A(t,z) and B(t,z) are unknown coefficients to be found( they are the probabili

ty amplitudes of the atom on the ground or excited states independent of the 
atom’s translational motion along the z axis). In the first stage of interaction 
(0<Z<2£/c) the atom interacts with the travelling wave £(Z,z) = 
= E cxp(ikz - a)t) + c.c . Substituting the Hamiltonian (1) with the mentioned field 

form and the wave function (2) into Schrodinger equation we get after standard 
transformations (in the rotating wave approximation) the following equations.

ih '34(,’z) = -U ex.p(-ikz)B(t, z),
& (3)

ih —֊^—- = -U cxp(ikz)A(t, z),

where U = dE, d = {(pu d b). Let the atom, as in experiments C1*3), is on the

ground state before the interaction and has some momentum PQ along the z-axis. Then

A0,z) =
1

Jink
exp(֊Poz) = x(P0); B(0,z) = 0. 

n
(4)

The system (3) has well-known periodic solutions with the Rabi frequency 
v = (///?. At the end of the first interaction stage (Z = t = 2L I c) we have

A(t, z) = Z(PO)cos 5(r>2) = >Z(po +hk)smvr (5)

which are the initial values for the second stage of interaction(with the standing wave). 
During the second time interval (T < t < , where T p is the light pulse duration) the

equations have the form (3) too, where the replacement t/exp(±z'Az) —> 2U cos kz 
must be done. At the end of interaction with the standing wave (/ = T p ) the solutions 

are
A(rp, z) = [/(r,,, t : z)cos ur - exp(<fe)g(rp, r: z) sin vt jz(^o) 

B(rp,z) = i[/(rp,r: z)sin vt + exp(-ikz)g(rp,T: z)cosvt]z(P0 + (6)

where the following notations are used

When the atom interacts with the ‘’tail” travelling wave (rp<t< <rp+r), 

which has the form E(Z,z) = Eexp(ikz - ait) + c.c , the amplitudes can be written
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A(l, r) = A(rp, z)cos v(z ֊ zp) + jexp(/fe)5(rp, z) sin v(t - rf) (9a)

B(t,z)= B(Tp,z)cosv(t ֊rp) + iexp(-ikz')A(Tl,,z)sinv(t-T!,). (9b) 

At the moment t = ip + r the light pulse is passing, leaving the atom in the free A 
state. After the above-mentioned three stages of interaction, atom flies and falls on 
detector, spontaneously emitting from the excited states. But it is clear that really the 
contribution is small from these incoherent one-photon processes and it can be left 
behind.

In distinction from the initial moment t = 0. atom hasn’t' a definite value of 
momentum along the z-axis. But (including (l՜3) too) the atoms in experiments, as a rule, 
are registered under the definite angles in comparison with initial direction, i.e. in the 
states with the definite values of P.Therefore, it is worth to expand the atomic total am
plitudes (6) in a series of amplitudes with the definite values of momentum. For this we 
use the known formula:

j (10)

where is the Bessel function. Then the square of modulus of the coefficient at the 

each exponential expression presents the atomic probability to have the momentum 
P = Po + nhk on the ground (for t4’s series) or excited (for fi’s senes) energy values. 
For them we obtain the following expressions (rp <t <rp + r):

(Ha)

excited

n
-[Jrt+1(w)cosvsin tv

(lib)

where u = 2vrr.
These formulas present, in fact, the momentum distributions for the ground and 

excited atoms consequently. Each of them is asymmetric relative to n —> -n 
transformation in general. To see the principal result of this paper, the CAMPA 
phenomenon, it is enough to compare these expressions for two moments of time. 
t = r when the influence of standing wave has just finished, and t = tp + r when the 

*
interaction runs fully. Expressions strongly differ from each other in general. It can be 

confirmed also by the illustration on Fig.2(a,b).
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Fig 2a The probability versus

the number n of reemitted photons at 

the moment t = Tp, when the influen

ce of standing wave is just finished, 

and at the moment t = r + r when 

the interaction runs fully. The para

meters are ^(r)| = = 2՜ ’

Fig. 2b. The W'Xl/ed probability versus 

the number n of reemitted photons at 

the moment t = Tp, when the influence 

of standing wave is just finished, and 

at the moment t = T + r The parame 

ters are the same as on Fig 2.

vt = 20, vt p = 50.

The average momentum obtained by an atom for any interaction moment in the, can 
be presented as a sum of two terms: (P) = = {P'j + (AP^. For the final interaction 

range ( rp < t < Tp + r ) the quantities (P)"’ and (AP) are average momentum 

obtained during the interaction with standing wave and obtained in the '’tail” travelling 
wave before the consideration of moment t, consequently. Additional average momentum 
(P)՞ and (AP)՞, like the corresponding probabilities (Ila) and (11b), obtained by 

means of CAMPA, oscillate on Rabi frequencies On Fig.3a we show these oscillations

for the case —, P(r) = —. The preceding time ranges are presented too. The

oscillation amplitudes approximately equal to the ‘’entrance” value. So, one photon 
coherent process can vary atomic momentum on the ground and excited states just equal 
to the variation, induced in the standing wave! Of course, the total additional momentum 
varies only in the limits of one photon momentum hk . Fig.3b illustrates similar oscillati-

ons for the case = 1։ 2?(r) = 0 (symmetric scattering in the standing wave).

338



for the case of maximum asymmet 
0' of momentum distribution after

wave

the interaction with the standing

The parameters are vr = 20, vt p = 50

Fig.3b. The time evolution of for the

case of symmetric of momentum distribu
tion after the interaction with the standing 
wave (|/f(r)j՜ = ֊-). The 

parameters are vt = 20, vt p = 50.

Let us also note a special future of scattering for final moment of interaction in 
scheme (l՜3). It is the relation (P)^ = (P)”7 + (AP) =0 at the moment t = rp + r . 

This relation means that the asymmetry of scattering induced for excited atoms by the 
existence of first travelling wave is rubbed out by the final travelling wave. It will be ex- 
pected that the CAMPA phenomenon will appear most sharply, if at the initial moment of 
interaction with the last travelling wave the atom has

(a) wide and symmetric (for modulus) distribution of momentum for both ground 
and excited energy levels

(b) equal populations of energy levels.
It is clear that (b3) interaction scheme is not optimal for CAMPA, because the (a) 

and (b) conditions aren’t satisfied simultaneously. Actually, the first condition takes 
place for cos vr = 1 (or sin yr = 0), but then one of energy levels isn’t populated at all, 
and on the contrary, when the energy levels are populated equally, the momentum 
distributions are maximally asymmetric and narrow. Nevertheless the CAMPA makes a 
contribution into the process of the atoms scattering compareable to the contribution of 
standing wave even in such unfavorable conditions.

We hope that this phenomenon will be taken into account in consistent quantum 
theory of interaction with the travelling e.m. wave when atomic (molecular) wave 
function is preliminary modulated by the interaction with the periodic field, in particular 

for substantial explanation of results
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IL ժ. ՄՈՒՐԱԴՅԱՆ, Հ. Լ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ

Մհդուլացւիսծ րնակեցվածության ամպլիտուդների կոհերենտ կուտակում.
Ատոմների ցրումը հանդիպակաց լուսային իմպուլսների դաշտում

Ցույց է տրված, որ կանգուն և նրան հաջորդող վագող ալիքների հետ երկմա- 
կարդակ ատոմի ռեզոնանսային փոխազդեցության հետևանքով առաջանում է իմ- 
պուլսային տարածության մեջ ատոմի կողմից ձեռք բերածիմպողսների բաշխման 
ֆունկցիայի կտրուկ խտացման հնարավորություն:

А Ж. МУРАДЯН, Г. Л. АРУТЮНЯН

Когерентная аккумуляция модулированных амплитуд 
вероятности: Рассеяние атомов в поле встречных световых 

импульсов
Показано, что вследствие резонансного взаимодействия двухуровневого 

атома с стоячей волной и последующей бегущей появляется возможность рез
кой концентрации в импульсном пространстве распределения приобретенных 
атомом импульсов.
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