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IN T R O D U C T IO N
V. A. Ambartsumian has often pointed out ((1), Epilogue) that versions 
of the ’’invariance principle” he has used in the study of scattering of 
light may be effective in other mathematical problems as well.

R. Bellman and his followers (2) have developed and systematically 
applied similar ideas. Completely recognizing the priority of V. A. 
Ambartsumian, they coined the term of ’’Invariant Imbedding” to 
designate the corresponding mathematical approach, presumably to 
become useful in mathematical physics at large. Outside mathematical 
physics, an analytical procedure which can be attributed to invariant 
imbedding, has been applied in integral geometry in (3), where it helped 
to discover basic combinatorics governing the relation between measures 
in the space of lines and metrics.

The present article applies invariant imbedding in the related 
field of stochastic geometry. We derive differential equations for the 
probability distribution of the number of hits of a test segment by 
the lines of a random line process, valid under certain factorization 
assumptions. The imbedding parameters are the direction and the 
length of the test segment. The results are valid for random line 
processes that are translation invariant in distribution and possess
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first and second moment measures. There are also some smoothness
assumptions.

Section 1 contains necessary prerequisites from the theory of trans­
lation invariant random line processes. The proofs of the properties 
listed in this section can be easily worked out within the standard 
framework of the ’’method of fixed realizations” as presented in (4).

In §2, invariant imbedding is applied towards derivation of differen­
tial relations involving Palm type probability distributions of the line 
process. In §3 we consider the marked point processes of hits induced 
on test lines by the lines of the line process. The marks are the angles at 
which the hits occur. We show that certain degree of independence be­
tween the point process of hits and the sequence of hit angles transforms 
these relations to differential equations of rather conventional nature. 
As stated by the concluding Theorem, under another additional as­
sumption of ” sufficient mixing” and absence of correlation between the 
cotangents of the angles, these equations can be resolved yielding Pois- 
son distribution for random numbers of hits on test segments. Among

4

earlier attem pts to consider similar questions we mention (5) (this paper 
was the first to study the general random line processes), Chapter 10 
in (4) and (6). They all used, approaches different from the present one.

' •  4

§1 . T R A N S L A T IO N  IN V A R IA N T  L IN E  P R O C E S S E S
We consider random line processes in the Euclidean plane Ю.2. A line 
process is defined to be (4) a random point process in the space of 
lines. Our notation will be g for a line in 1R2 and {g,} for a random 
line process. The latter notation stresses the fact that a line process is

'  V  ֆ

M
M

j

the՝probability distribution of {</,} (a probability measure on M). We 
say that a line g ’’hits” a segment 7 if у П д  reduces to a point in the 
relative interior of 7.
Given a ’’test segment” 7, we will consider the event

7 ) =  {7 is hit by exactly к lines from {5,}}.

1  * 1

Given two test segments 71 and 72 and two nonnegative integers ki,kt,  

we write ( for the intersection of  ̂ and ^ . This notation

extends to any number of test segments. For the probabilities of the 

events we use notation like P \ ՜Լ ). In the definition that follows and

186



elsewhere we write rig fur I hr unique (up to constant factor) measure in 
the space of lines which in invariant with respect to Euclidean motions
of m 2.

Definition 1. A line process {g,} belongs to the class TICD2 if its probability 
distribution P is invariant with respect to the group of translations o f the

(Translation Invariant)

Continuous Densities Д  and f 2.
(outside )

contains
the class TICD2 that we will need for Invariant Imbedding in §2. Their 
proofs can be easily obtained by the method of ”fixed realizations” 
presented in (4), and therefore are omitted.

next
remain fixed. We

1. by attaching the lateral sides «i and to 7, otherwise called vertical 
windows. Two segments hi and h2 attached to 7 to make continuations 
of 7 we call horizontal windows. The length of the windows, vertical or

assum e

<7

Fig. 1

Property P I  : for any window w, vertical or horizontal,

P w
1 0 (0 ,  p

w
2 0 ( l2) and P ( =  o(I2) for к > 2

We will use special short notation

Я hi
1 and V Vl

1

The intensities of the process of intersection points induced by {</,} on 
a horizontal (A/r) or vertical (Av) test lines are well defined :

Ая =  lim Г 1Р (Н )  and \ v — lim/ ^ (У ).
i—o I—
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Property P2 : the  following 1 imiія existj * )

liinГ 2Г(ИП) = с,{/1, ПтГ'2Р(А) = cA and Jim/ 2P ( B ) - c B, 
f—o

where M  = ( ‘;  АД  while Л с  (  ”' is the subevent that occurs
whenever „  and », are intersected by the same fee  from {* }, while s  
is the relative complement of A within (  "j J 1 -e- B stands for the 
case where the intersections are caused by two different lines from

Property P3 :

£ p{h ; :Н ,г)՛ii+j2>3 4
We wiU need the concepts of Palm type distributions Hv , ПБ
and Пh h  of a process {̂ t} (for*, a «rigorous geometrical theory of Palm
distributions see (4)).

Roughly, each of. these Palm type distributions Jlz is the limiting, 
as I tends to 0, conditional distributions of conditions! upon the
event Z. For each Z e {H, V, B ,H H }  we can speak about the line process
that correspond to Пz-

Both Пв and Инн are concentrated on the set of realizations that 
possess two lines through the endpoints 1 and 2 of 7. We parameterize 
the latter two lines by angles фі and 2̂ measured as shown on Fig. 2, 
making both Աք and Пни  probability measures on the space (0,7г) x 
(0,7г) X M. In particular, we can speak about their values on the events
of the type Ո {Ѳі} Ո {0 շ} where Ѳі, 0 շ are two subintervals of 

(0 , 7t ), {©,-} stands for the event fa e Ѳ,- that occurs at the endpoint i.

Both probability distributions Пя and Пѵ are 'concentrated on the set 
of realizations that possess a line through the endpoint 1 of 7, i.e. both

I

live on the (0,тг) x M. In particular, the values of Пя and Viv on the 
events of the type Ո {0ւ} are well defined.
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We write Ez for the expectation  with respect to the probability measure
n z .

Property P4. Let /<’(փւ.տ) a bounded function defined on (0,x) x M. If 
{fff} £ T I C D 2 , then for every choice of 7

\ H E H [F(i> 1, m) | cot ф\] = Xv Ev Е{фх, m).

Property P5. Let ^(Фі,Ф2,т )  be a bounded function defined on (0,тг)х 
(0,7г) X M . I f  {</,} € T I C D 2 , then for every choice of 7

c h h E h h  [ F { i p i ,  V>2,m ) | coti/>i cot ф2 \] =  с в Е в  Е { ф і , ф 2, т п ) .
ֆ

Palm type probability of arbitrary event in M  can not in general be
limit

same

(?)

/

For a side и of the rectangle R, и փ «1} we define the event

C) {there is exactly one line in {g,-} that hits vi 

and this line leaves R  via u}

and extend this notation to intersections of such events. From now on 
by Si we denote the interval (0,я-/2),՜ and by S2 the interval (я-/2,7г). 
Along with the sides 7 and <r, we consider the two diagonals di and d2 
of the rectangle R  on Fig;. 1J ՝

Property P 6. I f  {gi} G T IC D 2, then four limit relations of the form

lim/ 2P  ( ? Vl ) =  cyllvi—*o \ k  Ui
7 

к —
r W , } ]

hold. The map
(u,ui) I * (г, i)

on which they depend is given by

( 7 , 7 )  Ւ-* ( 1 , 1 )  ( i i i , 7 )  *-> ( 0 , 1 )  (7» ^1) * * (0) 2) ( ^ і і ^ і )  •-» ( 1 , 2 )

Property P 7. I f  {gi} G T I C D 2, then sixteen limit relations o f the form

- 0 nw,nwl
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hold. The map
(u, ui,u3) >-* (r, i , j )

on which they depend is given by the table

(7,7,7) i-* (2,1,2) (7,7, it) t—. (1,1,1) (7, (7,7) m  (1,2,2) (7, «") >— (0,2,1)

(<7, 7 , 7 ) »-♦ (0 ,1 ,2 )  (<Л7. <r) *-* (1 ,1 .1) K ^ , 7 )  >-» (1 ,2 ,2) O'. <7,<r) и  (2,2,1)

(^ 1 , 7 , 7 ) (1 ,1 ,2 )  (<*i,7. °՜) *-*■ (0 ,1 ,1) ( d i ) <7,7 ) (—» (2, 2,2) (rfb <7,(7) K-* ( 1 ,2 ,1)

№ . 7 . 7 ) '-*■ (1 ,1 ,2 )  (<^2.7, <7) н֊» (2 ,1 ,1) (d2,<7,7 ) >-► (0,2, 2) (d2, er,cr) 1-+ (1 ,2 ,1 )

Limit conditioning by the event A has a special status. In fact, the 
method of fixed realizations yields (4) the existence of Palm distribution 
Пд only for line processes that are invariant with respect to the group 
of Euclidean motions (translations and rotations). For {g,} e T IC D 2 a 
condition of existence of the limit

*է = 1ե ո ^ ( ճ ) ] ֊ ^ ( ^ )  Ո ճ) =  օ ^  l im /֊2P ( ( * )  Ո ճ). (1)

is contained in Proposition 2 of the next section. In (1), the segment x 
is defined as follows : whenever the event A occurs, {g,} contains a line 
which hits both vi and v2, and we take x to be the segment cut from 
that unique line by the vertical windows.

§2. INVARIANT IMBEDDING
We formulate the two propositions of the present section for the line

from
imbedding

We
Axk =  хіt — xjt—i for the first and 
A 2yk =  t/յէ -  2г/іь-і + Ук-Ղ for the second difference w ith  respect to к. 

Proposition 1. I f  {gi} e T I C D 2, then the following limit exists

lim(AW)֊1 К 1 0  ~  Ղ  * ) ]  =  ПЧ  U  ֊  1)  Ո {Տ2})  +

+  Uv I j ) n { 5, } )  - П к ( ^ ) п { 52} ) - П к  ( ( к 1_ 1 )Ո{Տւ}
(2)

}

where Si is the interval (0, ir /2), Տշ is the interval (7г/2,7г). 

The proof of this proposition, based on PI and P 4 , we leave to  the  
reader because it is a simplified (”first order”) version of the proof of 
Proposition 2, which we give in com plete detail.
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Proposition 2. If {gi) £ 'Г 1C 1)2 and the limit

«Կ 
к

(1)
L k ( l )  =  -2C/1 Д і*  +  cu &?yk , (3)

where

Ук = Ив ( ( 7 ո {Si} Ո {Si} I + Пв ( ( l )  ո  {Տշ} Ո {52}
1 ւ յ , , լ ^ ւ ; ;  й 

Пв I I  ) ո {Si} Ո {Տշ}) -  n B ( ( l  ) ո  {Տշ} Ո {S!}
(4)

“ * V U

with Si and S2 same as in Proposition 1.
Proof : For convenience in writing, we occasionally use the notation 
(see Fig. 1) 7 =  <ti and а =  օ՜շ. For each choice of r from the collection
{օ՜ւ, օ՜շ, di, d2} we represent as a union of mutually exclusive events

T \ -  II ( T vl v2
к . V  j i  h

By P 3, when I —* 0

£ p(i i
I ■

and therefore

= o<£ < / U  շ
0<յւ4-յշ<2

i22 )  +  օ ( Դ  (5)

> *

A line which enters a triangle crossing one of its sides leaves the triangle 
crossing one of the remaining sides. Therefore we have the set identities

<?i vi v2 \  _  f  d1 vi v2 \  ( <Ti vi v2 \  _  /  d2 vi v2
к 0 j 2 -  \  к 0 յ ՜շ )  ’ I к j i  0 / I к j i  0

(6)
as well as similar identities for <r2. 
In the expression

D = p , d i ) - p ( l ) - p ( l ) + p ( ‘ %

we replace the individual probabilities by their decompositions (5). 
Further, the probability of each event (  Հ1 v?  ̂ , where either j i  or
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յշ or both equal zero we replace according to (6) (or the analog of (g) f0r 
օ՛շ). In the resulting sum the probabilities of each event Լ  ̂ ^  Л
where at least one of the indices h  or j 2 equals zero, will enter twiCe1 к — j «VСЛ и IV̂ttOU Ш1Ѵ./ V/X waxw - -- w -
with opposite signs. So these terms cancel out an g

*

D £i=1,2
We have

r
Jfe

СTi Ul
к 1

vi V2
1 1

«2
1 ) + E P di

к
v\
1

V2
1 + °(/2) (7)

r
к u\

V\ V2
Աշ (8)

(иипя)еи

where U =  { «2,7,0-} x {vl t j , a } ,  and the events under the union are 
mutually exclusive.
Therefore the probabilities in ( 7) can be replaced by sums of proba­
bilities of the events according to (8). By P 3, for pairs (iti,u2) = (սշ,^
(Ն2,Մ), (7, i>i) and (cr, ѵх) we have

P J  V i  V2
к u\ Աշ

and (7) takes the form

D E  *  ( ?
i=l,2 v

Ui v 2
V2 V!

+ Е*(І£=1,2 4
V i  V 2 
V2 V i

+

+ E E P
*-1.2 L(ui,u2)ecf1

t)i v2
Щ Աշ +  p

V i  v 2 

«1 «2

{7, cr} X (7,0"}. N ote that (

(9)

Ul Նշ ) coincides
V2 Ux

where in the last sum U\ —

with A  as defined in P 2 .
We divide (9) by I2 and let / — 0. Using P 7 , one can check that

lim/J-.0
-2

E
«=1,2 _(“ 1|Աշ)6(/ւ

p  [ դ
к

Ux V2 
Ul U2 +  p di vi V2

к Ui Աշ СвА2Ѵк

By the definition of the segment x

<Ti
к Ո ճ X

к Ո ճ a n d di
к Ո ճ X 

к -  1 ո ճ .

The existence of the lim its, i = 1,2

l im / - 2P1—0
V i  v 2 

Ն'շ VX С A  & к and lim/ 2i—о P V i  v 2

v2 Vi
СлХк- 1

from the existence of the Umits for x0 because
x - i
proved.

— ’V I f \ " ~ u
0 and then in succession, for all г*). Proposition 7 is cornplt*tcly *
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§3 . КАСТОЙI/.A T tO N  A N D  SUJ I I(Л BN'I MI XI NG C O N ­
D IT IO N S

length < and direction a of the segment 7. So we can use "function*!
notation

p ( I } =
and the left-hand side of (2) reduces to

]im P*(nA2 + l7,a + 0) -  Pk{i,a) _  1 dpk(t,a)
f - ^ 0  l  8 օ լ  1

while for (3) applying Taylor expansion we find

I  Ы  = lim Р *(^2 +  l2,a  +  P) ~ 2pk(t1a )+p k (V t2 4- P , a -  0)
fc՝7' J-.0 /2

1 d p k ( t , a )  2 d 2 p k { t , a )
* ■— W ~  + t ' - - d a 2 ' (10)

Validity of ( 10) is essentially the smoothness assumption to which we 
refer in the Theorem below. Turning to the right-hand sides of (2) and 
(3), we first transform them using P4 and P5. By a remarkable interplay 
of signs

ХѵПѵ ( ( І ) П{ М ) ֊ ^  ( ( l ) n { S ^ ) = X» E Hl ( j ^  cotifrx, (11)

where I  stands for the indicator function of the corresponding event 
(dependence on m e  M suppressed). Similarly, for the quantities y* in
(8) we have

Ук =  Е н н і  (  \  )  cot Фі cot Փշ.

We are ready to consider the consequences of certain factorization 
assumptions F 1,F2 and F3, expressed in terms of the probability 
distribution of random marked point process {Pi,^i}g of intersections 
induced by {̂ *} on a test line g. In this notation, Pi = g Ո дг», while 
the mark tխ is the angle at which the intersection at Pi occurs. We 
note in advance, that jointly, the three assumptions F1,F2 and F3 
are essentially less restrictive than the Cox independence well known 
in stochastic geometry (5). We say, that {Pi,^i}g has Cox independence 
property, if for test line g of any direction a, the sequence of angles 
{̂ ,*} is independent of the point process {P,}, and {г/;*} is a sequence 
of independent angles. Doubly stochastic Poisson line process {^,}
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factorgoverned by random meaeure of the form Հ 
is random while /\(Ф) in nonrandom (Cox line processes), all have this
property.
Assumption F l  ; for any direction a, any t and к the random variables 
cot and 1 (I)

We have
A(a) =  J  sin тр/г

where Д is the density of the first moment measure of {<?»} (because 
of translation invariance, Д depends solely on the direction ф of the 
line g), ՜Փ is the angle between the directions ф and a. Therefore the 
probability density of random angle фі is (A (a ) ) ՜ ' 1 sint/>/i(<£)di/>. Hence

EH cot =  (A(a))-1 J  cos0 /iԼՓ)ՃհԻ = ֊(A(a))"1A/(a),

with A'(a) denoting the first derivative in oc. By so called Palm formulae 
for point processes in one dimention, see (4)

A(a) [П„( , 7 Л —Пk - 1  J “ я \  к ) \  dt ' ^
We come to the conclusion that under the assumption F l ,  the relation  
(2) transforms to the differential equation

֊ ^ ֊  = i ֊ (A(tt))~1A,( a ) flpfcgt’ ^  • (13)

The equation ( 13) can be easily solved by standard m ethod of charac­
teristics. Its general solution has the form

Pk(t, a) =  գհ(Հօ)է), (14)
I  •

where g*(-) is some function of one argument.

Assumption F2  : for any direction a, any t and fc th e random  variables 

cotV'i coti/>2 and I  ( \ are uncorrelated, i.e.

E h h I  c0^ co* =  ^ я я  ( ^)  E h h  cottpi cott/i2.

One can easily derive the second order analog of (12) :

сяя Д 2Пяя
т \  d2pt(t,a )  
к  d t 2

We conclude that under assumption
dpk(t ,a )  d2ph( t ,a )  пг , 2 л т . f2 l(f  sd2pk{t ,a )  , ,

1 dt---- +  ՛ da? ~ ֊ 2 cAt A x k +  t a ( t ,a ) ----- — ---- , ( 15)dt da2
where a(f, a) =  E h h  cot ipi cot վշ.
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Wc observe (“) that cA(y) = t-1/i(a) and 2 /,(a) = A(«) + A"(a). By а
direct substitution of ( 14) into (16) wc gel the following corollary of FI 
and K2 acting jointly :

(A + A") q'k + <[(А')г -  Az • n{t,a)]t/l = “ (A + А") Да;*. (16)

Assumption F3 : for any direction a and any l

Euir cot V»i cot V>2 = EH cot фі Еи cot tp2 = [A'(a)]2[A(a))~2

Under F3 the equation (16) transforms to

q'k = - A x k. (17)

This infinite system of equations is easily solved if we make one more 
additional assumption that

** = p (1  ) =Pk(t,a) (18)

meaning limiting independence of the events A and (  ̂J . We call
(18) the assumption of sufficient mixing. Roughly, (18) means that the 
circumstance that v is chosen to lie on one of the lines from the random

•  I  II
collection {̂ {} can be ignored, as far as the distribution of the number 
of hits on that segment is considered. In the limit, as / —» 0, x receives ̂1 4 • г
length t and direction a.
Under (18), the solution of (17) satisfying natural initial conditions
ցօ(0) = 1 and gjt(O) = 0 for к > 0 yields Poisson probabilities with unit

tkparameter qk(t) = yr e *. This result we formulate as a theorem.k\
THEOREM. Let {</,} e T IC D 2 possesses smooth hitting probabilities 
pk(t,a). I f  for any direction a and length է, {ді} possesses the three 
factorization properties F I, F2 and F3, as well as the property of sufficient

9

mixing, then ?*(*,<*) зге Poisson probabilities with parameter X(a)t, where 
A(a) is the sin-transform of the density of the first moment measure.

We note in conclusion, that if the condition of sufficient mixing is
removed, then the Theorem becomes invalid, as demonstrated by any
Cox line processes {pt*} E T IC D 2 for which the factor Հ is essentially
random. For them the probabilities р*(£, <*) become mixtures of Poisson
probabilities. The latter reduce to Poisson probabilities whenever Հ is
nonrandom. But in that case the line process { ,̂} becomes Poisson.
Clearly, for Poisson {p*} the sufficient mixing condition is satisfied.

Institute of Mathematics, ̂Գ» . 1 ^
՜ՀՀթ&հէ ՜  Armenian Academy of Sciences
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ՀԱՄԲԱՐՁՈԻՄՅԱՆ
Հ,ւյլւյԼԱՍUHU Ա |1 -* • •

Հասւասսււսւ)|ւ|1 « ա .|» ա « -№  ЬРМрш1шф „1рашО

W - w  ___________; հ  % r «  ‘ * " W ‘C, ' ' ‘ Հ - ք Հ  4 ‘" " t r T f ?  ‘ r tp ‘-

1  Ղ r J  1 1  . . . .  . , ..... I . ...„/, . „ ա ա ա Հ ա կ ա ն  պ ր ո ; յ ե ս Ն ն ր .Г% —•

ւղիղների են փաւ1ս1,զւլւ՚լաԱլ“ յ̂լ- -  լ֊֊-^֊Ա-քյաս որ„չ
ած, որ եթե բավարարվ ես ին պատկանող ուղիղների քանակի...../..... іі.ш/, ճաա>1ածր Հարող Ա J

րււսշիյ.
АМБАРЦУМЯНЛЛйДСШПП А д- - - Г

Инвариантное вложение в стохастической геометрии
Оодной

дифференциальные

предположениях факторизации вы- 
I вероятностей, описывающих рас-
^гмента прямыми, принадлежащимипределение чииш * w * * .............................................................

трансляционно-инвариантному случайному процессу прямых на плоскости.
Показано, что при дополнительном условии т.н. достаточного перемеши­

вания" полученные уравнения допускают лишь пуассоновские решения.
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