ДОКЛАДЫ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Том 98

МЕХАНИКА

NoI

УДК 539.3

А. М. Симонян, Н. Т. Сукоян

Исследование теплового расширения пакетов из волокнистых композитов

(Представлено академиком НАН Армении Л. А. Агаловяном 14/XI 1997)

В приборостроении, космической и робототехнике, а также в ряде других отраслей промышленности определенную актуальность имеет создание конструкционных материалов, размеры которых не изменяются или относительно мало изменяются при изменении температуры. При использовании многослойных композиционных материалов изменение температуры приводит к возникновению взаимоуравновешивающих напряжений в слоях, вследствие анизотропии их теплофизических свойств, что отражается на эффективных значениях коэффициента теплового расширения (КТР) материала.

В настоящей работе получены формулы для расчета эффективных значений КТР многослойных волокнистых композиционных материалов с учетом возникающих напряжений в слоях. Приведено сравнение расчетных и экспериментальных данных, полученных на плоских и трубчатых углепластиковых образцах, и рассмотрены возможности получения терморазмеростабильных композиций на основе стеклопластика.

- 1. Расчет коэффициента теплового расширения пакета композита. В основе расчета принимаются следующие допущения (1-6):
- а) Каждый слой рассматривается как однородный, для всех точек которого принимаются усредненные значения деформации и напряжении в слое.
- б) Принимается, что слои композита упруго-ортотропны и не имеют взаимного проскальзывания.
- в) Пакет композита рассматривается как бесконечная пластинка, пренебрегаются напряжения в направлении, перпендикулярном плоскости пакета.

Пусть x и y — некоторые ортогональные оси в плоскости пакета композита, а оси 1 и 2 — ортогональные оси вдоль и поперек армирования i-го слоя композита. Углы φ_i , определяющие наклон оси 1 i-го слоя относительно оси x, а также толщины h_i , определяют структуру пакета композита.

Согласно допущению б), деформации \mathcal{E}_{x} , \mathcal{E}_{y} и γ_{x} всех слоев одинаковы Запишем выражения для деформации *i*-го слоя в зависимости от деформаций пакета:

$$\varepsilon_{1}^{i} = \varepsilon_{x} \cos^{2} \varphi_{i} + \varepsilon_{y} \sin^{2} \varphi_{i} + \gamma_{xy} \sin \varphi_{i} \cos \varphi_{i};$$

$$\varepsilon_{2}^{i} = \varepsilon_{x} \sin^{2} \varphi_{i} + \varepsilon_{y} \cos^{2} \varphi_{i} - \gamma_{xy} \sin \varphi_{i} \cos \varphi_{i};$$

$$\gamma_{12}^{i} = (\varepsilon_{y} - \varepsilon_{x}) \sin 2\varphi_{i} + \gamma_{xy} \cos 2\varphi_{i}.$$
(1.1)

Согласно закону Гука, при температурном воздействии для каждого *i-*го слоя, с учетом его ортотропии, имеем следующие соотношения:

$$\sigma_{1}^{i} = \frac{1}{1 - \mu_{12}^{i} \mu_{21}^{i}} \left[E_{1}^{i} (\varepsilon_{1}^{i} - a_{1}^{i}T) + E_{2}^{i} \mu_{21}^{i} (\varepsilon_{2}^{i} - a_{2}^{i}T) \right]$$

$$\sigma_{2}^{i} = \frac{1}{1 - \mu_{12}^{i} \mu_{21}^{i}} \left[E_{2}^{i} (\varepsilon_{2}^{i} - a_{2}^{i}T) + E_{1}^{i} \mu_{12}^{i} (\varepsilon_{1}^{i} - a_{1}^{i}T) \right]; \qquad (1.2)$$

$$\tau_{12}^{i} = G_{12}^{i} \gamma_{12}^{i},$$

где E_1^i , E_2^i , G_{12}^i — модули упругости i-го слоя вдоль и поперек волокон и модуль сдвига соответственно, μ_{21}^i — коэффициент Пуассона, соответствующий деформации поперек волокон при растяжении вдоль волокон, $\mu_{12}^i = E_2^i \cdot \frac{\mu_{21}^i}{E_1^i}$, a_1^i , a_2^i — КТР вдоль и поперек волокон соответственно.

Для напряжений σ_x^i , σ_y , τ_{xy}^i в *i*-м слое, в направлениях x и y можем записать следующие выражения:

$$\sigma_{x}^{i} = \sigma_{1}^{i} \cos^{2} \varphi_{i} + \sigma_{2}^{i} \sin^{2} \varphi_{i} - \tau_{12}^{i} \sin 2\varphi_{i};$$

$$\sigma_{y}^{i} = \sigma_{1}^{i} \sin^{2} \varphi_{i} + \sigma_{2}^{i} \cos^{2} \varphi_{i} + \tau_{12}^{i} \sin 2\varphi_{i};$$

$$\tau_{xy}^{i} = (\sigma_{1}^{i} - \sigma_{2}^{i}) \sin \varphi_{i} \cos \varphi_{i} + \tau_{12}^{i} \cos 2\varphi_{i};$$
(1.3)

Поскольку КТР пакета определяется при отсутствии внешних сил, справедливы следующие соотношения:

$$\sum_{i=1}^{n} h_{i} \sigma_{x}^{i} = 0; \sum_{i=1}^{n} h_{i} \sigma_{y}^{i} = 0; \sum_{i=1}^{n} h_{i} \tau_{xy}^{i} = 0, \qquad (1.4)$$

где n — число слоев в пакете.

Подставляя соотношения (1.1) - (1.3) в (1.4), получим:

$$A_{11}\varepsilon_{x} + A_{12}\varepsilon_{y} + A_{13}\gamma_{xy} = TB_{1};$$

$$A_{21}\varepsilon_{x} + A_{22}\varepsilon_{y} + A_{23}\gamma_{xy} = TB_{2};$$

$$A_{31}\varepsilon_{x} + A_{32}\varepsilon_{y} + A_{33}\gamma_{xy} = TB_{3},$$

$$(1.5)$$

где

$$A_{11} = \sum_{i=1}^{n} \left[\left(E_{1}^{i} \cos^{4} \varphi_{i} + E_{2}^{i} \mu_{21}^{i} \cdot \frac{\sin^{2} 2\varphi_{i}}{4} + E_{2}^{i} \sin^{4} \varphi_{i} \right) \times \right]$$

$$\frac{1}{1-\mu_{12}^{i}\mu_{21}^{i}} + G_{12}^{i} \sin^{2} 2\varphi_{i} \Big| h_{i};$$

$$A_{12} = \sum_{i=1}^{n} \left[\left(E_{1}^{i} + E_{2}^{i} \right) \frac{\sin^{2} 2\varphi_{i}}{4} + E_{2}^{i}\mu_{21}^{i} \left(\sin^{4} \varphi_{i} + \cos^{4} \varphi_{i} \right) - G_{12}^{i} \left(1 - \mu_{12}^{i}\mu_{21}^{i} \right) \sin^{2} 2\varphi_{i} \Big] \times \frac{h_{i}}{1 - \mu_{12}^{i}\mu_{21}^{i}};$$

$$A_{22} = \sum_{i=1}^{n} \left[E_{1}^{i} \sin^{4} \varphi_{i} + E_{2}^{i}\mu_{21}^{i} \cdot \frac{\sin^{2} 2\varphi_{i}}{2} + E_{2}^{i} \cos^{4} \varphi_{i} + G_{12}^{i} \left(1 - \mu_{12}^{i} \cdot \mu_{21}^{i} \right) \sin^{2} 2\varphi_{i} \right] \times \frac{h_{i}}{1 - \mu_{12}^{i}\mu_{21}^{i}};$$

$$A_{13} = A_{31} = \sum_{i=1}^{n} \left[\left(E_{1}^{i} \cos^{2} \varphi_{i} - E_{2}^{i} \sin^{2} \varphi_{i} \right) \cdot \frac{\sin^{2} 2\varphi_{i}}{2} + E_{2}^{i}\mu_{21}^{i} \frac{\sin^{4} \varphi_{i}}{4} - G_{12}^{i} \left(1 - \mu_{12}^{i}\mu_{21}^{i} \right) \frac{\sin^{4} \varphi_{i}}{2} \right] \frac{h_{i}}{1 - \mu_{12}^{i}\mu_{21}^{i}};$$

$$A_{23} = A_{32} = \sum_{i=1}^{n} \left[\left(E_{1}^{i} \sin^{2} \varphi_{i} - E_{2}^{i} \cos^{2} \varphi_{i} \right) \cdot \frac{\sin^{2} 2\varphi_{i}}{4} - E_{2}^{i}\mu_{21}^{i} \frac{\sin^{4} \varphi_{i}}{4} - G_{12}^{i} \left(1 - \mu_{12}^{i}\mu_{21}^{i} \right) \frac{\sin^{4} \varphi_{i}}{2} \right] \frac{h_{i}}{1 - \mu_{12}^{i}\mu_{21}^{i}};$$

$$A_{33} = \sum_{i=1}^{n} \left[\left(E_{1}^{i} + E_{2}^{i} - 2E_{2}^{i}\mu_{21}^{i} \right) \frac{\sin^{2} 2\varphi_{i}}{4 \left(1 - \mu_{12}^{i}\mu_{21}^{i} \right)} + G_{12}^{i} \cos^{2} 2\varphi_{i} \right] h_{i};$$

$$B_{1} = \sum_{i=1}^{n} \left[a_{1}^{i} E_{1}^{i} \left(\cos^{2} \varphi_{i} + \mu_{21}^{i} \sin^{2} \varphi_{i} \right) + a_{2}^{i} E_{2}^{i} \left(\sin^{2} \varphi_{i} + \mu_{21}^{i} \sin^{2} \varphi_{i} \right) \right] \times \frac{h_{i}}{1 - \mu_{12}^{i} \mu_{21}^{i}};$$

$$B_{2} = \sum_{i=1}^{n} \left[a_{1}^{i} E_{1}^{i} \left(\sin^{2} \varphi_{i} + \mu_{12}^{i} \cos^{2} \varphi_{i} \right) + a_{2}^{i} E_{2}^{i} \left(\cos^{2} \varphi_{i} + \mu_{21}^{i} \sin^{2} \varphi_{i} \right) \right] \times \frac{h_{i}}{1 - \mu_{12}^{i} \mu_{21}^{i}};$$

$$B_{3} = \sum_{i=1}^{n} \left[a_{1}^{i} E_{1}^{i} \left(1 - \mu_{12}^{i} \right) - a_{2}^{i} E_{2}^{i} \left(1 - \mu_{21}^{i} \right) \right] \sin^{2} \varphi_{i} \cdot \frac{h_{i}}{2}.$$

Соотношения (1.5) позволяют определить деформации \mathcal{E}_x , \mathcal{E}_y и \mathcal{Y}_m , возникающие в пакете при изменении температуры на значение T. Легко видеть,

что эффективные значения КТР a_x , a_y и a_x могут быть определены как ε_x / T, ε_y / T и γ_{xy} / T соответственно. Отметим, что при несимметричном армировании имеет место коэффициент a_x , соответствующий скосу пакета.

Решая систему уравнений (1.5), получим:

$$a_{x} = \frac{1}{\Delta} \begin{vmatrix} B_{1} A_{12} A_{13} \\ B_{2} A_{22} A_{23} \\ B_{3} A_{32} A_{33} \end{vmatrix}; \quad \alpha_{y} = \frac{1}{\Delta} \begin{vmatrix} A_{11} B_{1} A_{13} \\ A_{12} B_{2} A_{23} \\ A_{13} B_{3} A_{33} \end{vmatrix};$$

$$a_{xy} = \frac{1}{\Delta} \begin{vmatrix} A_{11} A_{12} B_{1} \\ A_{21} A_{22} B_{2} \\ A_{31} A_{32} B_{3} \end{vmatrix}; \quad \Delta = \begin{vmatrix} A_{11} A_{12} A_{13} \\ A_{21} A_{22} A_{23} \\ A_{31} A_{32} A_{33} \end{vmatrix}.$$

$$(1.7)$$

Формулы (1.7) позволяют рассчитывать коэффициенты теплового расширения пакета композита в зависимости от коэффициентов теплового расширения и модулей упругости его слоев, а также их углов армирования.

В случае симметричного армирования относительно оси x получим $A_{13}=A_{31}=A_{23}=A_{32}=B_3=0$, и формулы (1.7) примут вид:

$$a_{x} = \frac{B_{1}A_{22} - B_{2}A_{21}}{A_{11}A_{22} - A_{12}^{2}}, a_{y} = \frac{B_{2}A_{11} - B_{1}A_{21}}{A_{11}A_{22} - A_{12}^{2}}, a_{xy} = 0.$$
 (1.8)

2. Экспериментальное исследование температурного расширения пакета из углепластика. Испытанию были подвергнуты образцы, изготовленные прессованием углеленты ЛУП-0,2, пропитанной связующим Э-341А (смолы ЭД-20 и СФ-341А в спиртацетоновой смеси в соотношении 1 : 1). Содержание смолы в пропитанной углеленте составляло 38-41%, содержание летучих компонентов — до 3%. Режим отверждения был следующим: повышение температуры до 100°С и выдержка в течение 1 ч, затем повышение до 110° с выдержкой в течение 1 ч, далее: 120° — 1 ч, 130° — 1ч, 140° — 1 ч, 150° — 2 ч, 160° — 3 ч, 180° — 4 ч, понижение температуры до комнатной осуществлялось в выключенной печи. Количество слоев углеленты составляло 28. Размеры образцов для определения КТР были приняты следующими: 20×4×3,5 мм и 200×10×3,5 мм — для механических испытаний.

Однонаправленный углепластик, полученный после прессования при давлении 5 атмосфер, имел следующие характеристики:

 $E_1=1,73\cdot 10^5$ Мпа, $E_2=0,175\cdot 10^5$ Мпа, $G=0,116\cdot 10^5$ Мпа, $\mu_{12}=0,0266$, $\mu_{12}=0,26$, $\alpha_1=(-1,006\div +0,116)\cdot 10^{-6}$ 1/град, $\alpha_2=(23,3\pm 6,6)\cdot 10^{-6}$ 1/град. Были изготовлены пакеты углепластика со следующими схемами армирования: 1(78°), 7(0°), 1(-78°); 1(69°), 7(0°), 1(-69°). Результаты испытания образцов приведены в таблице.

Значения коэффициентов теплового расширения пакетов

Схема армирования	Направление продольной оси образцов	Экспериментальные значения а,(10 ⁻⁶) 1/град	Расчетные значения а,(10 ⁻⁶) 1/град
1(78°), 7(0°), 1(-78°);	00	-0,50 ÷ +0,86	0,517
	90°	6,26 – 7,14	6,55
1(69°), 7(0°), 1(-69°).	00	$-0,09 \div +0,13$	0,311
	90°	10,08 + 10,66	7,47

Экспериментальные значения a, приведенные в таблице, даны с их средними квадратичными отклонениями на базе 5 испытаний. Учитывая существенную нестабильность экспериментальных данных a для однонаправленного углепластика (несмотря на небольшие разбросы их в пределах одного листа, из которых выпиливались образцы), видимо, можно считать приемлемым соответствие экспериментальных и теоретических данных.

Кроме того, были изготовлены трубы прямоугольного сечения (38×24 мм) толщиной 1 мм и длиной 760 мм с теми же схемами армирования: 1(78°), 7(0°), 1(-78°) и 1(69°), 7(0°), 1(-69°). Изготовление осуществляли следующим образом: сначала на алюминиевую оправку, обработанную жидкостью 1376-11, наматывали один спиральный слой ленты под углом 78° (или 69°), затем укладывали 7 слоев углеленты, ориентированной в продольном направлении (0°), после чего наматывали внешний спиральный слой под углом -78° (или -69°).

Полученный полуфабрикат помещали в пресс-форму и подвергали термоотверждению.

Проведенные эксперименты дали следующие результаты: $a = (0.07 - 0.57) \cdot 10^{-6} \; (1/\text{град})$ при расчетном значении $0.517 \cdot 10^{-6} \; (1/\text{град})$ для первой схемы армирования и $a = (0.14 - 0.47) \cdot 10^{-6} \; (1/\text{град})$ при расчетном значении $0.311 \cdot 10^{-6} \; (1/\text{град})$ для второй схемы армирования, т.е. соответствие экспериментальных и теоретических данных для труб оказалось лучше, чем для плоских образцов.

Отметим, что напряжения, возникающие в каждом *i*-ом слое композита при действии температуры, могут быть рассчитаны по формулам (1.2) при использовании (1.1).

3. О возможностях получения терморазмеростабильных элементов из композитов. При проведении численных расчетов было обнаружено, что значения КТР пакета могут находиться вне интервала a_1,a_2 определяемого экспериментальными значениями КТР для одного слоя. Это означает, что принципиально, возможно создание пакета композита с $a_x = 0$, хотя для каждого элементарного слоя имеют место положительные значения КТР в

любом направлении. Возникает, например, вопрос, можно ли получить терморазмеростабильные элементы из стеклопластика? Как показали расчеты, это возможно, но не для любого стеклопластика: чем больше различие значений a_1 и a_2 , а также чем выше значение E_2 и ниже G, тем больше удаление эффективного значения a_x от интервала (a_1,a_2) , а следовательно и возможность достижения $a_x=0$. Этому можно дать следующее физическое объяснение. Представим себе стержневую решетку с шарнирными закреплениями (рис.1). Если попытаться в такой решетке отдалить параллельные стержни друг от друга (имитируя $a_1>a_2$), то, очевидно, точки A и B будут приближаться друг к другу, если угол $\phi<45^\circ$. Этому препятствует сопротивляемость сдвигу. При приближении ϕ к 45° взаимное сближение точек A и B соответствует ничтожно малому отдалению стержней решетки. (Формально, отдаление параллельных стержней решетки приводит к бесконечному сближению точек A и B).

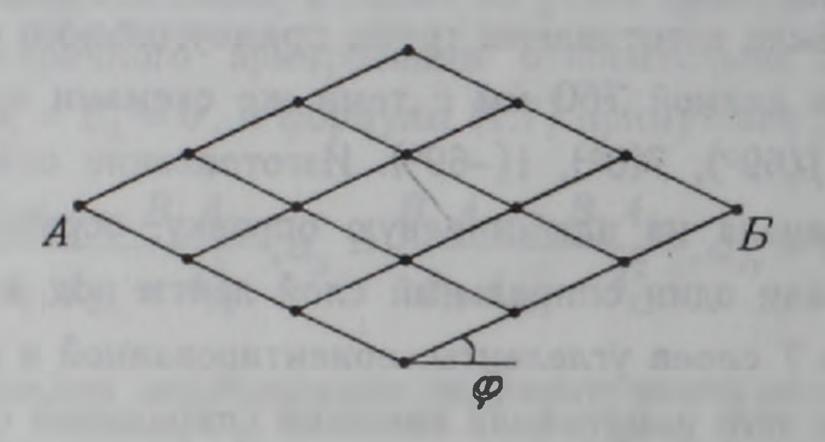


Рис.1.

Ниже рассмотрим стеклопластик со следующими характеристиками: $a_1=7\cdot 10^{-6} \quad (1/\text{град}), \quad a_2=40\cdot 10^{-6} \quad (1/\text{град}), \quad E_1=5,04\cdot 10^4 \quad \text{Мпа,} \\ E_2=1,0\cdot 10^4 \quad \text{Мпа,} \quad G=0,2\cdot 10^4 \quad \text{Мпа,} \quad \mu_{12}=0,04 \;, \quad \mu_{12}=0,2 \;.$

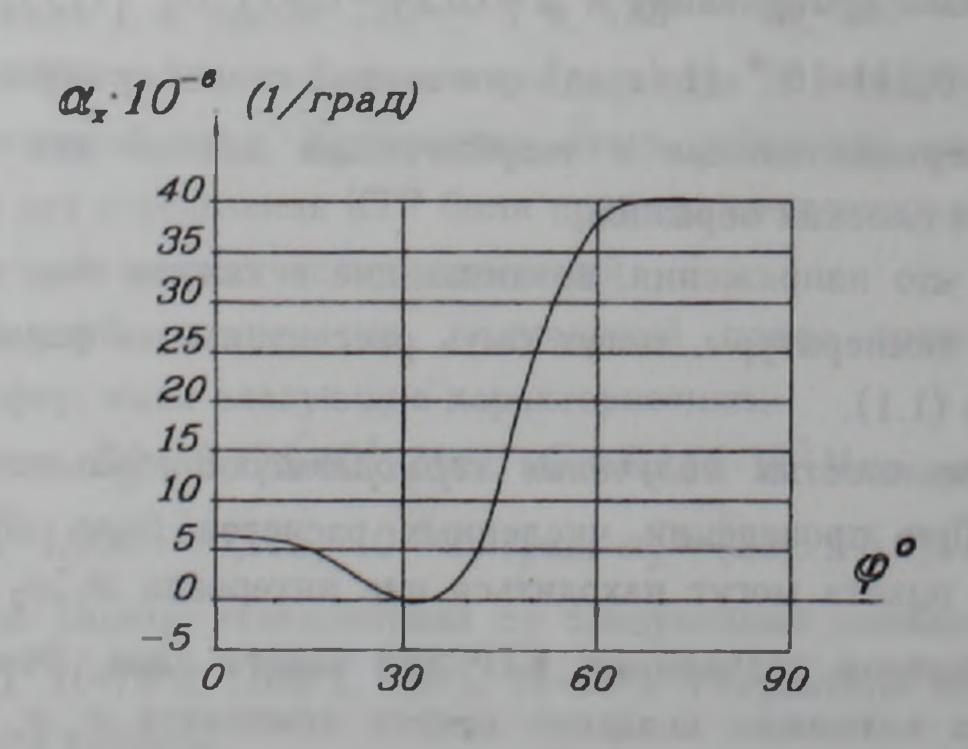


Рис.2.

Расчеты, проведенные с этими характеристиками для симметричной системы армирования $n(\varphi)$ и $n(-\varphi)$ в зависимости от угла φ , приведены на рис.2, откуда видно, что при $\varphi=30^\circ$ такой пакет в направлении x имеет КТР. значение которого близко к нулю. Формально рассмотрим предельный случай: $E_1=E_2$, G=0. Для симметричного армирования $n(\varphi)$, $n(-\varphi)$ из соотношений (1.8) получим:

$$a_x = a_1 - (a_2 - a_1) \cdot \frac{\sin^2 \varphi}{\cos 2\varphi}$$
 (3.1)

Естественно, что при $a_1=a_2=a$, независимо от угла φ , согласно (3.1) $a_x=a$. Для случая же $a_2>a_1$, обычно имеющего место для волокнистых композитов, a_x может приобретать и отрицательные значения в интервале

$$rctg\sqrt{rac{a_1}{a_2}}, причем $a_x=0$ при $arphi=rctg\sqrt{rac{a_1}{a_2}}$. Однако у реальных$$

композитов $E_2 < E_1$ и $G \neq 0$ и возможности получения пакета со значениями $a_x = 0$ более ограничены.

Институт механики НАН Армении

Ա. Մ. ՍԻՄՈՆՅԱՆ, Ն. Տ. ՍՈՒՔՈՅԱՆ

Թելիկային կոմպոզիտներից պատրաստված փաթեթների ջերմային ընդարձակման հետազոտությունը

Ստացված են բանաձևեր բազմաչերտային կոմպոզիտ նյութերի ջերմային ընդարձակման օպտիմալ արժեքների Հաչվարկի Համար չերտերում առաջացած լարումների Հաչվառմամբ։

Արված է հաչվարկային և հարթ ու խողովակաձև նմուչների վրա կատարված էքսպերիմենտալ հետազոտությունների արդյունքների համեմատություն։

Հետազոտված են ապակեպլաստի Հիման վրա ջերմաչափակայուն կոմպոզիտ նյութ ստանալու Հնարավորությունները:

ЛИТЕРАТУРА - ФРЦЧЦЪПЪРЗПЪЪ

1 *И.Ф.Образцов*, *В.В.Васильев*, *В.А.Бунаков*, Оптимальное армирование оболочек вращения из композиционных материалов, М., Машиностроение, 1997. ² *Ю.М.Тарнопольский*, *А.М. Скудра*, Конструкционная прочность и деформативность стеклопластиков, Рига, Занатне, 1966. ³ *Ю.В. Немировский*, ПМТФ, №6, 1966. ⁴ Г.А.Ван Фо-Фы, Механика полимеров, №2, 1965. ⁵ В.В.Болотин, Расчеты на прочность, вып.12, М., Машиностроение, 1966. ⁶ С.Цай, В.Адзи, Ракетная техника и космонавтика, №2, 1966.