Том 97

1997

No1

МАТЕМАТИКА

УДК 512 642

А.М.Григорян

Квазилинейные пространства

(Представлено академиком НАН Армении А.Б.Нерсисяном 17/V 1996)

В работе (1) было предложено рассмотрение квазилинейных систем, которые позволяют не только строить новые методы, но и объединить и классифицировать имеющееся к настоящем времени многообразие линейных и нелинейных методов (и систем), широко используемых во многих областях цифровой обработки сигналов и изображений (2,3). Такие системы представляют собой гомоморфные отображения, определяемые в пространствах с алгебраической структурой, названной квазилинейным пространством. С их помощью было выделено основополагающее свойство суперпозиции, присущее многим нелинейным операциям, и определена та минимальная алгебраическая структура, которая включает в себя линейные пространства и многие совокупности множеств и функций, традиционно считающихся нелинейными.

1. *Квазилинейное пространство* элементов определяется над некоторым множеством с бинарной операцией, подчиняющейся заданным аксиомам группы или моноида (4).

Пусть множество K есть мононд, т.е. ассоциативное множество с единичным элементом. Будем называть K множеством скаляров. Суть построения квазилинейного пространства состоит в ослаблении условий линейного пространства в степени, достаточной для получения таких границ пространства, которые включили бы многие полезные пелинейные образования элементов. В то же время мы постараемся сохранить максимум возможного в структуре линейного пространства (5).

Определение 1. Непустое множество E элементов x, y, z, ... называется квазилинейным пространством (над моноидом K), если выполнены следующие три требования

I. Имеется правило ρ , посредством которого любым двум элементам z и y множества E ставится в соответствие третий элемент z из этого множества, обозначаемый через $x\rho y$, т.е. $z=x\rho y$.

- II. Имеется правило τ , посредством которого любому элементу x множества E и любому числу $k \in K$ ставится в соответствие элемент u из E, обозначаемый через $k\tau x$, т.е. $u = k\tau x$.
 - III. Эти правила удовлетворяют следующим шести аксиомам:
 - 1°. $x\rho y = y\rho x$;
 - 2° . $x\rho(y\rho z) = (x\rho y)\rho z$;
 - 3°. в E существует такой элемент 0, что $x\rho 0=x$ для всех $x\in E$;
 - 4° . $1\alpha = x$ для каждого элемента $x \in E$;
 - 5°. $k_1 \tau(k_2 \pi) = (k_1 k_2) \pi$ для всех чисел $k_1, k_2 \in K$;
 - 6°. $k\tau(x\rho y) = (k\tau x)\rho(k\tau y)$.

Квазилинейное пространство E с операциями ρ и τ будет обозначаться через $E(\rho, \tau; K)$.

- 2. Предлагаемая концепция квазилинейных пространств связывает известную концепцию линейных (или векторных) пространств с пространствами, которые сильно отличаются от линейных пространств. Можно сказать, что понятие квазилинейного пространства совпадает с линейным пространством, если множество скаляров K есть числовое поле S(g) (где g ее вторая бинарная операция) и к перечисленным шести аксиомам добавить следующие две аксиомы:
- 7° . для каждого элемента x существует такой элемент x, что $x\rho(-x)=0$;
 - 8°. (k_1gk_2) тх = $(k_1\tau x)\rho(k_2\tau x)$ для всех $k_1,k_2 \in S(g)$.

Следует отметить следующие три обстоятельства в пользу квазилинейных пространств. Во-первых, так как поле имеет достаточно регулярную структуру, невозможно построение полей с произвольным числом элементов - конечные поля существуют только, когда число элементов равно степени простого числа. С другой стороны, моноиды (и группы) с произвольным числом элементов легко строятся. Вовторых, в теории обработки изображений, которые описываются положительными дискретными функциями многих переменных, операция противоположного элемента (отрицательного изображения) вообще лишена смыс: 2. Потому здесь нет необходимости в аксиоме 7°. И наконец, для многих целей цифровой обработки сигналов и изображений аксиома 8°, в отличие от других аксиом линейного пространства, требует выполнения довольно сильных условий, поскольку жестко связывает алгебраическую структуру множества скаляров (а выбор таких может быть различным) с аддитивной структурой самого пространства.

Эту аксиому мы назовем аксиомой существования прямой лишии. Рассмотрим аксиому 8° , в которой для упрощения записи будем считать, что a = +. Так как $1 \in S(+)$, следующее соотношение $1\pi = (k\pi)\rho((1-k)\pi) = x$ имеет место для любого $x \in E$ и всех $k \in S(g)$.

Для фиксированного элемента x из E рассмотрим функцию l(k) на S(+), график которой $G(k) = G_x(k) = (k, l(k)) = (k \alpha, (1-k) \alpha)$.

На плоскости $E \times E$ график G(k) этой функции представляет собой прямую, пересекающую оси координат в точках (0,x) и (x,0). Гаким образом, в линейном пространстве Е каждый элемент х индуцирует прямую, пересекающую оси координат на расстоянии х от центра: $x \Rightarrow L(k)$. Другими словами, можно сказать, что линсиное пространство это такое множество E, для которого имеет место следующее утверждение: для заданного элемента $x \in E$ все точки соответствующей прямой $l_x(k)$ лежат в произведении $E \times E$. Более того, вместе с $l_x(k)$ в $E \times E$ лежат и все прямые, параллельные первой. И мы можем рассматривать операции ρ и τ на E как операции параллельных переносов прямых в $E \times E$. Обозначим через L рассмотренное семейство параллельных прямых $L = \{l_x : x \in E\}$, полностью лежащих в произведении линейных пространств $E \times E$. В силу приведенных рассуждений, аксиому 8° будем называть аксиомой существования прямой (или семейства параллельных прямых). Такая интерпретация аксиомы 8° полностью согласуется с шестью аксиомами линейного пространства.

При анализе аксиомы 8° линейного пространства мы естественно приходим к мысли ее замены или обобщения. Действительно, можно попытаться ввести такую аксиому, которая позволяла бы рассматривать произведение пространств $E \times E$ как множество, образованное семейством подобных кривых, отличных от прямых. Для этого возьмем некоторую бесконечную в обе стороны кривую $l_{\rm c}$, проходящую через точки $(0,x),(x,0) \in E \times E$. И рассмотрим соответствующее ей семейство подобных кривых \tilde{l}_{ν} (кривых, образованных гомотопиями с центром в начале координат и положительными (или произвольными, когда берется числовое поле S) коэффициентами), $\tilde{L} = \{\bar{l} : y \in E \setminus \{0\}\}$. Возникает вопрос — как записать аксиому 8° , чтобы все кривые l_{ν} лежали бы в $E \times E$? Нетрудно показать, что для этого нужно, чтобы для всех $k \in S$ выполнялось тождество: $x = (k_1 x) \rho(I(k_1)x)$. Будем считать, что $\widetilde{l}_{x}(k)=\widetilde{l}(k)$ тх, где $\widetilde{l}(k)$ бесконечная в обе стороны кривая пересекает оси координат в точках (0,1) и (1,0), т.е. $\overline{l}(0)=1$, $\overline{l}(1)=0$. Поэтому соответствующая аксиома 8° должна принять вид

$$(k_1gk_2)\varpi = (k_1\varpi)\rho((k_2g\tilde{k}_1)\varpi) , \quad \tilde{k}_1 = (k_1g(-1))g(\tilde{I}(k_1)), \quad (1)$$

для всех $k_1, k_2 \in S(g)$ и любого $x \in E$. В случае числового поля S(+) такая аксиома записывается в виде $(k_1 + k_2) x = (k_1 x) \rho (k_2 + k_1) x$.

 $\bar{k}_1 = k_1 - 1 + \bar{l}(k_1)$ для всех $k_1, k_2 \in S(+)$ и любого $x \in E$.

Эту аксиому будем обозначать как аксиому 8° и называть ее аксиомой существования бесконечной кривой заданного вида. А для заданного семейства подобных кривых L квазилинейное пространство, дополненное аксиомами 7° и 8° , назовем L-пространством. Ясно, что когда L есть семейство L параллельных прямых, рассмотренных выше, то L-пространство совпадает с линейным пространством.

В квазилинейных пространствах, как и в линейных пространствах, можно ввести понятия линейной независимости элементов, базиса и гомоморфизма. Все они связаны с понятием подпространства, подобно такому для линейного пространства.

3. Приведем примеры квазилинейных пространств.

Пример 1 (пространства функции). Совокупности F действительных n-мерных функций f(x), g(x),..., определенных на множестве X с областью значений $\overline{R} = [-\infty, +\infty]$, вместе с операциями $\rho = \max(\vee)$ или $\min(\wedge)$ и умножением $\tau = \times$ на элементы группы $R_+ = (0, +\infty)$: являются квазилинейны пи пространствами $F(\vee, \times; R_+)$ и $F(\wedge, \times; R_+)$, соответственно.

Пример 2 (п-мерное пространство). Множество упорядоченных совокупностей $(x_1, x_2, ..., x_n)$, ... из n элементов $x_i, y_i, ..., i = 1 + n$, есть квазилинейное пространство с операциями поточечного сложения и умножения на константу.

Пример 3 (полиномы). Множество P_n алгебраических полиномов степени < n с неотрицательными коэффициентами есть квазилинейное пространство $P_n(+,x;R_+)$.

Пример 4 (решетки). Пусть P_{v} и P_{v} есть v - и \wedge -полурешетки, т.е. упорядоченные множества с определенным коммутативным и ассоциативным бинарным отношением \leq , в которых произвольные элементы x и y имеют соответственно верхнюю точную грань (или \sup) $x \vee y$ и нижнюю точную грань (или \inf) $x \wedge y$. Операции v и v являются бинарными операциями в v0 и v1.

Если полурешетки P_{\downarrow} и P_{\uparrow} содержат наименьший и наибольший (универсальные) элементы, O и I, тогда выполняются следующие соотношения: 1) $x \lor y = y \lor x$, 2) $x \lor (y \lor z) = (x \lor y) \lor z$, 3) $x \lor O = x$, и 1) $x \land y = y \land x$, 2) $x \land (y \land z) = (x \land y) \land z$, 3) $x \land I = x$, для всех $x, y \in P_{\downarrow}$ Существуют различные полурешетки $(^{7})$, в которых мы можем определять операцию умножения и получить квазилинейные пространства. Например, если P_{\uparrow} есть полурешетка n-мерных полунепрерывных сверху числовых функций, тогда для обычного умножения $\tau = x$ на скаляр из грушпы K мы имеем: 4) $1\pi = x$; 5) $k_1\tau(k_2\pi) = (k_1k_2)\pi$; 6) $k\tau(x \lor y) = (k\pi) \lor (k\tau y)$. Пусть Z^* будет множеством положительных

чисел и $x \le y$ означает, что x делит y. Тогда, в множестве Z^* имеет место операция умножения на скаляр. Для заданного топологического пространства P семейство F всех открытых множеств является решеткой и имеет место операция гомотопии (подобия), $k \epsilon X = k X$, для всех $k \in Z$

Пусть P является дистрибутивной решеткой, то есть P есть одновременно $\vee -$ и $\wedge -$ полурешетка и следующие равносильные тождества имеют место: $x \wedge (y \vee z) = (x \wedge y) \wedge (x \wedge z) = (x \wedge z) \wedge (x \wedge z) = (x \wedge z) \wedge (x \wedge z) = (x \wedge z) \wedge (x \wedge z) \wedge (x \wedge z) = (x \wedge z) \wedge (x \wedge z) \wedge (x \wedge z) = (x \wedge z) \wedge (x \wedge z) \wedge (x \wedge z) \wedge (x \wedge z) = (x \wedge z) \wedge ($

Пример 5 (подмножества). Совокушности подмножеств X,Y,Z,... некоторого множества A, замкнутые относительно операций объединения и пересечения подмножеств и преобразования подобия: $X\rho Y = X \cup Y(X \cap Y)$ и $k\tau X = kX = \{kx; x \in X\}$, $k \in K$, являются соответственно квазилинейными просгранствами.

Пример 6 (свертка подмножеств). Пусть K есть группа с аляров с бинарной операцией g. Тогда множество семейств $T = \{T_a\}_{a \in K}$,... подмножеств некоторого множества A, замкнутое относительно преобразования подобия и операции свертки множеств, которую мы вводим в виде следующего объединения: $V = \{V_a\}_{a \in K} = T_{ag}(-b) \cap G_b\}$ составляют квазилинейное пространство $\mathcal{M}(\rho, \kappa; K)$.

Пример 7 (булевы функции). Пусть Θ есть операция сложения по модулю 2. Семейство n-мерных булевых функций $f(x_1,...,x_n)$ с операциями сложения булевых функций и умножения на неотрицательные целые: $f \circ g = f \circ G$ и $k \circ f = k \otimes f = f \circ G$ ($k \circ f \circ f \circ G$), если $k \ge 1$, является квазилинейным пространством с двумя логическими операциями.

Возникает следующий вопрос — можно ли всякое квазилинейное пространство дополнить до линейного? Ответ отрицательный, и для этого достаточно обратиться к примеру 1. Например, для квазилинейного пространства $F(\vee,\times;R)$ требование аксиомы 8° запишется в виде $(k_1+k_2)f=(k_1f)\vee(k_2f)$, что невыполнимо для $k_1\neq 0$ или $k_2\neq 0$.

Вышеприведенные примеры квазилинейных пространств показывают, что различные градиционно считающиеся нелинейными пространства элементов (функций, подмножеств) с разными операциями (арифметическими, логическими, теоретико-множественными) объединены общим понятием квазилинейного пространства.

Институт проблем информатики и автоматизации НАН Армении

Մ. ԳՐԻԳՈՐՅԱՆ

Քվազիգծային տարածություններ

ΛΗΤΕΡΑΤΥΡΑ - ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ A. Grigorian, S. Agaian, J. Astola, Proc. SPIE's Symposium on Electronic Imaging: Science and Technology, February 1995, San-Jose. 1995. ² E. R. Dougherty, J. Astola, SPIE Press, v. TT16 (1994). ³ I. Pitas, Venetsanapoalus, Nonlinear Digital Filters, Boston: Kluwer Academic Publisher, 1990. ⁴ M. Каргополов, И. Мерзляков, Основы теорин групп, Наука, 1972. ⁵ В. Ильин, Е. Поздняк, Линейная алгебра, 6-ое изд. М., Наука, 1974. ⁶ J. Serra, Image Analysis and Mathematical Morphology, London, Academ Hress, 1988. ⁷ Г. Биркгоф, Теория решеток, М., Наука, 1984.

The second secon