ЦЗЦИЗЦЪР ФРОЛЕДОВАТЬ ЦОЦАТЬ ЦАПАТЕ ОТ ВЕТИТОВАТЕР ДОКЛАДЫ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Том 96	1996	N22-4
		ФИЗИКА

Ф. В. Гаспарян, К. Б. Матевосян

YAK 629.7.0

Солнечные элементы на основе неоднородного легированного полупроводника

(Представлено академиком НАН Армении В. М. Арутюняном 3/V 1995)

В последние годы усилился интерес к неоднородно компенсированным полупроводникам, что обусловлено возможностью і арьирования основных параметров полупроводника в широком диапазоне с помощью создания специальных профилей легирующей примеси. На солнечных элементах (СЭ) на основе кремниевых p^*nn^* структур, по данным (¹), при двустороннем освещении можно получить мощности до 250 Вт/м². По данным (²), наличие неоднородности в распределении примесных атомов способствует увеличению квантовой эффективности на 175%. Проведенные нами расчеты в (³) показывают существенное влияние неоднородного легирования полупроводников на фоточувствительность и обнаружительную способность полупроводниковых ИК инжекционных фотодиодов.

Ниже рассматриваются p^*nn^* кремниевые структуры с неоднородно компенсированной базой и обсуждаются возможности создания на их основе СЭ. Статические, фотоэлектрические и шумовые характеристики таких структур детально рассмотрены ранее (³). Считается, что база структур содержит донорные примеси с мелким энергетическим уровнем (с концентрацией N_D) и компенсирована акцепторами (с концентрацией $N_A(x)$), создающими однозарядные рекомбинационные глубокие уровни (ГУ). Схематически вид структур и зонная энергетическая диаграмма показаны в (³) (см. рис.10.3). Рассматриваются несколько случаев распределения компенсирующих примесей.

1. Рассмотрим случай, когда ГУ распределены в базе по закону

$$V_{A}(x) = \begin{cases} N_{A_{1}} & \exp(-\alpha x), \ 0 \le x_{1} \le x, \\ N_{A} & = \text{const}, \quad x_{1} \le x \le d. \end{cases}$$
(1)

Здесь N, и N, – концентрация ГУ на границе освещаемого p^{*}n перехода и в объеме, соответственно; а – параметр, определяющий

темп изменения $N_A(x)$. Под влиянием солнечного излучения в области приповерхностного p^*n перехода создаются электронно-дырочные пары, которые впоследствии разделяются как полем p^*n перехода, так и встроенным в базе полем из-за наличия градиента концентрации $N'_A(x)$. В результате p^* область превращается в резервуар свободных дырок, а *n*-база — в резервуар для свободных электронов, уменьшается потенциальный барьер p^*n перехода. Структура оказывается в режиме прямого смещения. Такая ситуация характерна для структур с двойной инжекцией при слабых возбуждениях (³). Основываясь на такой аналогии, можно воспользоваться выражением для ВАХ структур с двойной инжекцией при слабых уровнях инжекции. Для случая распределения $N_A(x)$ по закону (1) оно имеет вид (³)

$$j = \frac{9}{8} e u_n u_p \tau_p^o \frac{N_D}{\beta' d^3} \left\{ V + V_F \left[\left(1 - \frac{x_1}{d} \right)^2 + A_1 \left(\frac{x_1}{d} \right) \sqrt{\frac{a x_1}{1 - \delta_4}} \right] \right\}^2 \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + A_2 \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + A_2 \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + A_2 \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{3/2} \right]^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{-1} \cdot \left[\left(1 - \frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^2 + \left(\frac{x_1}{d} \right)^{-1} \cdot \left[\left($$

Здесь

$$V_{F} = \frac{fN_{1}'d^{2}}{6u_{p}n_{1}N_{D}}, f = \alpha\eta\frac{\lambda}{hc}\frac{P}{S}, A_{1} = \frac{6\delta_{6}N_{A_{1}}}{abdN_{1}'}, A_{2} = \sqrt{(1-\delta_{4})\frac{N_{A_{1}}}{\beta'n_{1}}}$$

 α — коэффициент поглощения, η — квантовый выход, λ — длина волны излучения, P — плотность потока солнечного излучения, d длина *п*-базы, S — площадь светочувствительной поверхности. Остальные обозначения обычные (см., например, (³)).

Ниже для простоты считаем, что генерация свободных носителей заряда осуществляется в основном за счет собственного поглощения и для α используется формула Фэна (⁴)

$$\alpha = \frac{2\pi e^2 (2m_r)^{5/2}}{3\varepsilon_o m_o^2 h^2 c^2 n_n} \left(\frac{hc}{\lambda} - E_g\right)^{3/2} \frac{\lambda}{hc}$$

Здесь *m*, — приведенная масса, *m*_o — масса свободного электрона, ε_o — диэлектрическая проницаемость, *n*_n — коэффициент преломления полупроводника.

Из выражения (2) легко определяются значения тока короткого замыкания (при V = 0) и напряжение холостого хода (при j = 0). Путем приравнивания к нулю производных

$$\frac{dj_{k3}}{da} + \frac{dj_{k3}}{dN_{A_1}} + \frac{dj_{k3}}{dx_1} + \frac{dV_{a}}{da} + \frac{dV_{a}}{dN_{A_1}} + \frac{dV_{a}}{dx_1}$$

определяются оптимальные значения параметров *a*, *N*₄ и *x*₁, при которых *J*_{k3} и *м* принимают максимальные значения.

Чем больше значение N_{A_1} и меньше x_1 , тем сильнее происходит перераспределение внутреннего "встроенного" электрического поля в базе. и оно больше сосредоточится у "рабочего" p^*n перехода. В результате усилится темп разделения созданных излучением электронно-дырочных пар, и значения j_{k3} и V_{\pm} будут сравнительно большими. Выбор оптимального режима работы СЭ существенно ограничивается условием компенсации проводника (³).

Численный анализ показывает, что оптимальное значение параметра *а* составляет *а*опт = 200 см⁻¹, следовательно, *x*₁ = 0,01 см.

2. Рассмотрим случай, когда компенсирующая примесь распределена в базе по закону

$$N_{A}(x) = N'_{o} \exp(-a_{1}x) + N''_{o} \exp[(-a_{2}(d-x)], \qquad (4)$$

где N' и N'' – концентрация ГУ на границе p'n и n'n переходов соответствению.

2.1. В случае $a_1 = a_2$ имеем несимметричное распределение

концентрации ГУ в базе. При однородном распределении потока падающего излучения с помощью выражения (9.18) из (³) легко определить значения и V для этого случая:

$$j_{k3} = \frac{e\tau_{p}}{2a_{1}N'_{o}n_{1}bN_{D}} \left(\frac{\mu_{1}}{\mu_{2}}N''_{o}f\right)^{2}, V_{xx} = -\mu_{1}\frac{N''_{o}df}{u_{n}a_{1}n_{1}N_{D}}.$$
 (5)

Здесь μ_1 и μ_2 — некоторые безразмерные параметры (⁶).

Анализ зависимости J_{k3} и от оптимальных значений a_1 , a_2 , N и $N_o^{\prime\prime}$ показывает, что абсолютное значение V уменьшается с ростом значения a_1 и увеличивается с ростом d. Обратная тенденция наблюдается у J_{k3} .

Уменьшение j_{k3} в зависимости от d объясняется тем, что с ростом d растет время пролета электронов через базу T_n , уменьшается отношение τ_n / T_n (τ_n — время жизни электронов), растет темп рекомбинации. С другой стороны рост напряженности электрического поля у тылового nn контакта, связанный с характерным распределением ГУ (см. также (3.5)), настолько замедляет движение электронов в глубь базы из-за сильного роста темпа захвата их на ГУ, что уменьшается количество свободных электронов и тем самым уменьшается J_{k3} . Таким образом

57

уменьшение ј с ростом *d* связано как с ростом *T_n*, так и с уменыце. нием количества свободных электронов.

При двустороннем освещении *p⁺nn* структуры, когда интенсивность падающего излучения изменяется по закону

$$f = f_o(e^{-\alpha x} + e^{-\alpha(d-x)}),$$
 (6)

и и вновь определяются выражением (5) с заменой в них µ на µ (см. (⁶)). Здесь f_o – интенсивность излучения, достигающая поверхности структуры.

2.2. В случае $a_1 = a_2 = a$, $N'_o = N''_o = N_o$ для J_{k3} и V_{xx} получаем, соответственно,

$$j_{k1} = \frac{eb\tau_p^o N_o f^2}{2an_1 N_D} \left(\frac{\varphi_1}{\varphi_2}\right)^2, \quad V_{xx} = -\frac{\varphi_1 N_o df}{an_1 u_p N_D}$$
(7)

где φ_1 и φ_2 определяются сложными выражениями (⁶).

растет с ростом a, d и N_o , а абсолютное значение V_{\perp} растет с увеличением a и d при минимальном значении N_o . В отличие от предыдущих случаев j_{k3} растет с ростом d. Такое поведение можно объяснить следующим образом. С ростом d уменьшается значение встроенного поля в базе (хотя распределение E(x) не меняется), растут проводи-

мость и ток через структуру. В этом случае выполняется условие

$$\frac{T_{n(p)}}{\tau_{n(p)}} = \frac{d}{u_n \tau_{n(p)} E} > 1$$

которое все время облегчается с ростом *d* (и с уменьшением *E*). С другой стороны, при тех же условиях компенсации с ростом *d* ГУ будут более плавно распределяться по длине базы, что также может повлиять на темп рекомбинации и способствовать росту *j*_{k3}.

При неоднородном распределении интенсивности падающего излучения для J_{3} и V_{2} получаются выражения (7) с заменой в них φ_{1} на φ'_{1} (см. (⁶)). С ростом *a* и *d* абсолютное значение V_{12} уменьшается. Аналогичная картина наблюдается и у J_{13} , причем когда значение *d* приближается к диффузионной длине носителей тока, наблюдается резкий рост J_{13} (на порядок и более), что, на наш взгляд, обусловлено тем, что времена пролета носителей через базу сильно уменьшаются и большее число носителей проходит базу, не рекомбинируя.

3. Обобщая полученные результаты, заметим, что оптимальные значения *a* и *d* для всех рассмотренных случаев в основном близки. Существенное влияние па *j*_{k3} оказывает длина базы *d*. Для объяснения зависимости *j*_{k3}(*d*) можно воспользоваться двумя конкурирующими механизмами — генерацией и рекомбинацией носителей заряда.

58

Таким образом, полученные результаты показывают, что выбором технологического режима компенсации можно контролировать основные параметры компенсированного материала и создать условия увеличения значений јы и И...

На рисунке представлены спектральные зависимости ј и И для случая 2.2 и при падении излучения параллельно плоскости р⁺л перехода.

Спектральные зависимости (кр.1-3) и (кр.4-6) при одностороннем освещении p⁺nn⁺ структуры с плотностью потока падающего излучения ~10 Вт/м. Кривые соответствуют случаям: 1-а=800 см. 2 и 4- a = 1000 см⁻¹, 3 и 5-a=1300 см⁻¹, 6-a=1500 см⁻¹

Численные оценки проведены при 300 К для кремниевых p'nn' структур, база которых компенсирована атомами серебра. Для n – Si < Ag > использованы следующие параметры: исходное удельное $\rho = 4 \text{ OM CM}$ $(N_D = 1.6 \cdot 10^{14} \text{ cm}^{-3}), \quad u_p = 480 \text{ cm}^{-7}/\text{B} \text{ c},$ сопротивление $u_n = 1350 \,\mathrm{cm}^2/\mathrm{B}\,\mathrm{c}, \quad \tau_p^o = 1.5 \cdot 10^{-8} \,\mathrm{c}, \quad d = 2 \cdot 10^{-2} \,\mathrm{cm}, \quad N_o = 2.35 \cdot 10^{14} \,\mathrm{cm}^{-3},$ $n_1 = 3,5 \cdot 10^{13}$ см⁻³, $n_n = 3,5$, отношение сечений захвата электронов и дырок на ГУ 1/24, светочувствительная площадь $S=10^{-1}$ см. Результаты расчетов представлены графически (рисунок). В области справедливости формулы Фона ($\lambda \sim 1,1$ мкм) при a = 1300 см⁻¹ и при одностороннем освещении p'nn' структуры с плотностью падающего излучения ~ 1000 Вт/м²

выделяемая мощность на длине волны 1,1 мкм равняется 103,5 Вт/м² с КПД 10,8%.

Максимальные значения выделяемой мощности и КПД получаются при одностороннем распределении ГУ (максимально выделяемая мощность ≃118,4 Вт/м², а КПД 12,3%).

Авторы признательны академику НАН Армении В.М.Арутюняну за полезные советы и интерес к работе.

Ереванский государственный университет

Ֆ Վ. ԳԱՍՊԱՐՅԱՆ, Կ Բ ՄԱԹԵՎՈՍՅԱՆ

Անհամասեո լեգիրացված կիսահաղորդիչներից պատրաստված արեգակնային էլեմենտներ

Աչխատանքում քննարկվում է անՀամասեռ լիգերացված կիսաՀաղորդիչների օգտագործման Հնարավորությունը արեգակնային մարտկոցներ պատրաստելու Համար: Թվային Հաչվարկներն ու գնաՀատումները կատարվել են արծաթի ատոմներով լեգիրացված սիլիցիումից պատրաստված P ոո կառուցվածքների Համար: Կարճ միացման Հոսանքի և պարապ ընթացքի լարման Համար ստացվել են Համեմատաբար բարձր արժեքներ:

ΛΗΤΕΡΑΤΥΡΑ-Γ

¹ М.М.Колтун, Солнечные элементы, М., Энергоиздат, 1987. ² Г.Раушенбах, Справочник по проектированию солнечных батарей, М., Энергоиздат, 1983. ³ Ф.В.Гаспарян, З.Н.Адамян, В.М.Арутюнян, Кремниевые фотоприемники, Изд. ЕГУ, 1989. ⁴ А.Амброзяк, Конструирование и технология полупроводниковых фотоэлектрических приборов, М., Сов. радио, 1970. ⁵ Ф.В.Гаспарян, Г.Г.Агасарян, ДНАН Армении, т.94, №1, с.29-36 (1993). ⁶ К.Б.Матевосян, Дипломная работа, ЕГУ, 1994.