No 3

МАТЕМАТИКА

УДК 517.5

Э. А. Даниелян, Г. С. Мовсисян

О чебышенской экстремальной задаче на выпуклых глассах распределений

(Представлено академиком АН Армении Р. В. Амбарцумяном 29/Х11 1990)

1. Экстремальная задача. Пусть F— замкнутый относительно слабой сходимости выпуклый класс функций распределения (ФР) на [a, b]. где $-\infty < a < b < +\infty$;

$$u_1(t), \ldots, u_n(t), u_{n+1}(t), n \ge 1, -$$
 (1)

система непрерывных на [a, b] линейно независимых функций $u_k(t) = (u_1(t), \dots, u_k(t)), k = \overline{1, n+1},$ где $c_k -$ дей-ствительные числа;

$$M_k(F) = \left\{ \vec{c}_k : \vec{c}_k = \int_{-\infty}^{b} \vec{u}_k \, do, \quad c \in F \right\} -$$

моментные пространства;

$$F(\vec{c}_n) = \left\{ o : \vec{c}_n = \int \vec{u}_n \, ds. \quad o \in F \right\}.$$

Введенные множества обладают свойствами:

а) при любом $c_k \in \mathcal{M}_k(F)$ множество $F(c_k)$ замкнуто в смысле слабой сходимости и выпукло;

б) множество м (г) ограничено замкнуто и выпукло в R*.

Чебышевская задача. Для каждого $c_n \in M_n(F)$ найти

$$c' = \inf_{\mathbf{z} \in F(c_n)} \int_{-\infty}^{b} u_{n+1} d\sigma \quad \mathbf{R} \quad c'' = \sup_{\mathbf{z} \in F(c_n)} \int_{-\infty}^{b} u_{n+1} d\sigma.$$

Из свойств а) и б) следует достижимость в задаче. Именно:

Для каждого $c_n \in M_n(F)$ в классе $F(c_n)$ существуют ΦP , доставляющие в классе $F(c_n)$ минимум и максимум функционалу

$$\int_{a}^{b} u_{n+1} ds. \tag{2}$$

Действительно, выберем $= F(c_n) > 1$, такие, что $c_{(t)} = \int u_{n-1} ds \to c$. Так как $(c_n, c_{(t)}) \in M_{n+1}(F)$ при всех i > 1 и $(c_n, c_n) \to (c_n, c_n)$ то из-за замкнутости $M_{n+1}(F)$ имеем $(c_n, c_n) \in M_{n+1}(F)$. Аналогично $(c_n, c_n) \in M_{n+1}(F)$, откуда следует достижимость.

В наших условиях содержится также информация о ФР, доставляющих экстремумы функционалу (2).

Пример. В классе F_0 всех ΦP на [a,b], где $-\infty < a < b < +\infty$, нмеет место уточнение теоремы Каратеодори— Рисса (см. (¹)), приводящее к утверждению.

Для любого $c_n \in \mathcal{M}_n(F_0)$ в классе $F_0(c_n)$ существуют ступенчатые ΦP с не более чем n-1 скачками, доставляющие в классе $F_0(c_n)$ минимум и максимум функционалу (2).

Это утверждение формируется в терминах к-крайних точек*.

Пусть $E_k F_i$, $k \gg 1$ — множество k-крайних точек класса F_i , $D_k F$ — множество выпуклых линейных комбинаций не более чем k-1-крайних точек F_i .

Для класса F_0 нетрудно показать:

- 1) $E_i F_n$ множество одноступенчатых на [a, b] ФР;
- 2) при всех $k \gg 1$ $E_k F_0 = D_R F_0$.

Цель пастоящей заметки—доказать теорему I, согласующуюся с утверждением для класса F_{θ} .

Теорема 1. Для любого $c_n \in M_n(F)$ в классе $F(c_n)$ существуют ФР из $E_{n-1}F$, доставляющие в классе $F(c_n)$ минимум и максимум функционалу (2).

Доказательство объединяет несколько соображений.

I. Пусть $L_1[a,b]$ —пространство абсолютно интегрируемых на [a,b] непрерывных слева функций с нормой

$$|f| = \int_{n}^{b} |f(t)| dt.$$

[•] Определение к-крайней точки дано в приложении

Пространство L_1 [a,b] локально-выпукло и содержит любой замкнутый класс $\Phi P F$

Так как для ФР сходимости слабые и по норме L_1 эквивалентны (см. $(^2)$), то 2 компактное множество локально-выпуклого пространства*

2. Отображение

$$\int_{a}^{b} u_{n+1} ds, \quad s \in F,$$

является непрерывным аффинным отображением. Оно переводит компактное множество F локально-выпуклого пространства в компактное множество M в пространстве R^{n+1} .

3. В силу выпуклости класса F имеют место включентя

$$(c_n, c') \in \partial M_{n-1}(F), \quad (c_n, c'') \in \partial M_{n+1}(F).$$

Остается применить следствие 2 приложения.

2. Класс B_L . Теорема 1 допускает максимальное усиление в случае

$$E_1F = E_2F = \cdots = E_{n+1}F.$$
 (3)

Следствие 1. Пусть имеет место (3). Тогда для любого $c_n \in M_n(F)$ в классе $F(c_n)$ существуют ΦP из $E_1 F$. доставляющие в классе $F(c_n)$ минимум и максимум функционалу (2).

Примером замкнутого выпуклого класса ФР, удовлетворяющего условию (3), является класс B_L ФР на $[a,b], -\infty < b < +\infty$

Именно, $\sigma \in \mathcal{B}_L$ тогда и только тогда, когда для всех $a \leqslant t_1 < t_2 \leqslant b$

$$s(t_2) - s(t_1) \leqslant L(t_2 - t_1), \quad L \geqslant (b - a)^{-1}.$$

Для описания множества E_1B_L заметим, что ΦP из B_L абсолютно непрерывны: $\rho \in P_L$ где $P_L -$ класс плотностей B_L тогда и только тогда, когда $0 < \rho \leqslant L$ и

$$\int_{a}^{b} \varphi(t) dt = 1.$$

Если $\sigma \in E_1B_L$, то $\rho \in E_1P_L$ из-за выпуклости P_L и обратно. Замечание 1. Представления

$$| m \{t \in [a, b]: \rho(t) = L | = L^{-1}$$

$$| m \{t \in [a, b]: \rho(t) = 0 | = b - a - L^{-1}$$

$$(4)$$

для $\rho \in P_L$, где m- мера Лебега в R_1 , эквивалентны.

Отсюда и из свойства I из (3) следует существование k-крайних точек F при любом k > 1.

Если $p \in P_L$ и не имеет вида (4), то m $\{t \in [a, b]: 0 < p(t) < L\} > 0$. По свойству непрерывности меры для множеств

$$S_n = \left\{ t \in [a, b] : \frac{1}{n} \leq \rho(t) \leq L - \frac{1}{n} \right\}, \quad n \geq 1,$$

найдется k такое. что $m(S_k) > 0$. Выберем множества S_+ и S_- так, чтобы

$$S_{+} \cap S_{-} = \varnothing$$
, $S_{+} \cup S_{-} = S_{A}$, $m(S_{+}) = m(S_{-})$.

Определим плотности ρ_+ и ρ_- на [a,b]; $\rho_+=\rho_-=\rho$ на [a,b] S_+ $\rho_\pm=\rho\pm h$ на S_+ ; $\rho_\pm=\rho\mp h$ на S_- . По построению ρ_+ , $\rho_-\in P_L$ и $\rho_\pm=\frac{1}{2}(\rho_++\rho_-)$, т. е. $\rho_\pm\in E_1P_L$.

Итак, если $\rho \in P_L$, но не представимо в виде (4), то $\rho \in E_1 P_L$.

Леммв 1. Для того, чтобы $\psi \in E_1 P_L$, необходимо и достаточно выполнение (4).

Доказательство необходимости содержится в замечании 1. Пусть ρ из P_L представимо в виде (4). Для доказательства $\rho \in E_1 P_L$ допустим противное, т, е. найдутся $\rho_1, \, \rho_2 \in P_L$.

$$m \mid t \in [a, b]: \rho_1(t) \neq \rho_2(t) \mid > 0.$$
 (5)

■ $\lambda \in (0, 1)$ такие. что $\rho = \lambda \rho_1 + (1 - \lambda) \rho_2$ почти всюду по мере m. Поскольку $0 < \rho_1 < L$, $0 < \rho_2 < L$, то равенства

$$\rho_1(t) = \rho_2(t) = L$$
 μ $\rho_1(t) = \rho_2(t) = 0$

имеют место почти всюду на множествах $\{t \in [a, b]: p(t) = L\}$ и $\{t \in [a, b]: p(t) = 0\}$ соответственно.

Поэтому, согласно (4),

 $0 \le m \mid t \in [a, b]$: $\rho_1(t) \ne \rho_2(t) \mid \le m \mid t \in [a, b]$: $0 < \rho(t) < L \mid = 0$. что противоречит (5).

Лемма 2. Для класса В, имеют место равенства (3).

Доказательство. Согласно замечанию 1, $\sigma_0 \in E_1 B_L$ означает существование множества $A \subset [a,b]$ и чисел 0 таких. что <math>m(A) > 0 и 0 при всех <math>(A) = 0

Выберем непересекающиеся множества A_1, \dots, A_{n+1} такие, что

$$A = \bigcup_{i=1}^{n+1} A_i$$
, $m(A_1) = \cdots = m(A_{n+1})$.

Построим ΦP σ_{i} , σ_{n+1} с плотностями ρ_{1} , ρ_{n+1} следующим образом. $\rho_{j}=\rho_{0}$ на $\{a,b\}\setminus (A_{j}\cup A_{j+1});\ \rho_{j}=\rho_{0}+h$ на A_{j+1} , где $j=\overline{1,n+1},\ h<\min(p,L-p)$ и $A_{n+2}=A_{1}$. Здесь ρ_{0} есть плотность ΦP σ_{0} .

Нетрудно проверить, что $\rho_i \in P_L$ при всех i = 1, n + 1,

Покажем, что $\rho_1, \dots, \rho_{n+1}$ аффинно-независимы. Пусть на [a, b[

$$a_1 + \cdots + a_{n+1} = 0$$
 u $a_1 v_1 + \cdots + a_{n+1} v_{n+1} = 0.$ (6)

На множестве A_j (6) переходит в равенство $(z_j - z_{j-1})h = 0$, откуда следует $\alpha_1 = \cdots = \alpha_n = 0$.

Далее, легко установить

$$\rho_0 = (n+1)^{-1} (\rho_1 + \cdots + \rho_{n+1})$$
 Ha $[a, b]$,

т. е. $\sigma_0 \in E_n B_L$. Следовательно, если $\sigma_0 \in E_n B_L$ при некотором n > 1, то $\sigma_0 \in E_1 B_L$. Обратное включение следует из свойства 1 из (3).

Приложение. Пусть X — локально-выпуклое пространство, M — выпуклое компактное подмножество X, что обеспечивает наличие крайних точек в M (см. (4), с 85).

Определение (см. (1)). Точка $x\in M$ называется k-крайней точкой множества M, если не существуют аффинно-незавнсимые точки x_1,\ldots,x_{k+1} из M и положительные числа $\lambda_1,\ldots,\lambda_{k+1}$ такие, что

$$\lambda_1 + \cdots + \lambda_{k+1} = 1, \quad x = \iota_1 x_1 + \cdots + \iota_{k+1} x_{k+1}$$
 (7)

Если $E_k M$ — множество k-крайних точек M, то $E_1 M$ — множество крайних точек M.

Пусть $F: X \to Y$ непрерывное линейное отображение локальновыпуклого пространство X на локально выпуклое пространство Y; M — компактное выпуклое множество в X; M = F(M).

Теорема 2. Для любой точки $y \in E_k M', k \gg 1$. найдется точка $x \in E_k M$ такая, что y = F(x).

Доказательство. Замкнутое выпуклое подчножество

$$F^{-1}(y) = \{x \in M: F(x) = y\}$$

компактного множества M компактно и содержит хотя бы одну крайнюю точку, т. е. множество E_1 $F^{-1}(y)$ не пусто.

Покажем

$$E_1F^{-1}(y)\subset E_kM$$
.

Допустим противное. Именно, пусть для точки $x \in E_1 F^{-1}(y)$ существуют аффинно-независимые точки x_1, \dots, x_{k+1} из M и положительные числа $\lambda_1, \dots, \lambda_{k+1}$ такие, что имеет место (7). Тогда

 $y = F(x) = F(\lambda_1 x_1 + \cdots + \mu_{k+1})$ = $F(x) + \cdots + F(x_{k+1})$, (8) где, в силу $x_1, \dots, x_k \in M$ точки $F(x_1), \dots, F(x_k)$ принадлежат M.

Так как $y \in E$ то в представлении (8) для у точки $F(x_1), \dots$ $F(x_n)$ из M' аффинно-зависимы. Следовательно, найдутся не все равные нулю числа β_1 такие β_1 β_2 β_3 β_4 β_4 β_5 β_6 β_6

$$F(\beta_1 x_1 + \dots + \beta_{k+1} x_{k+1}) = 0, \quad \beta_0 + \dots + \beta_{k+1} = 0$$
 (9)

Равенства (8) и (9) эквивалентны представлениям: при всех вещественных t

$$y = F((\lambda_1 - t\beta_1)x_1 + \cdots + (\lambda_{n+1} - t\beta_{n+1})x_{n+1}) = 0,$$
 (10)

где, очевидно, $(\lambda_1 - t\beta_1) + \cdots + (\lambda_{k+1} - t\beta_{k+1}) = 1$.

Вообще говоря, точки $(\lambda_1 - I_1) x_1 + \cdots + (\lambda_{k+1} - t\beta_{k+1}) x_{k+1}$ могут не принадлежать M. Но для всех тех t, которые удовлетворяют не равенствам $0 < |t| < \lambda/\beta$ где

$$y = \min(y_1, ..., y_{k+1}) > 0$$
 $H \beta = \max(|\beta_1|, ..., |\beta_{k+1}|) > 0$.

эти точки принадлежат M. Действительно, поскольку $\kappa_1 - t_1^3 > 0$ для таких t и всех j=1, R-1, то эти точки являются внутренними точками k-мерного симплекса с вершинами x_2, \dots, x_{n-1} из M

Выберем t из условия 0 < t < > 6. Тогда точки $x' = (\lambda_1 - t_0\beta_1) x_1 + (\lambda_{t+1} - t_0\beta_{t+1}) x_{t+1} + (\lambda_{t+1} - t_0\beta_{t+1}) x_{t+1} + (\lambda_{t+1} + t_0\beta_$

Таким образом. мы доказали, что существует $x \in E_k M$ такое. что $x \in F^{-1}(y)$.

В частности, если У совпадает с R., то в силу лемыы 1 из (3),

$$E_{n+1}M'=M', E_nM'=\partial M'$$

н из теоремы 2 выподится

Следствие 2. Если $Y = R^{2}$, то

$$M' = F(E_{n+1}M), \quad \partial M' \in F(E_nM).$$

Ереванский государственный университет

է. Ա. ԴԱՆԻԵԼՑԱՆ, Գ. Ս. ՄՈՎՍԻՍՑԱՆ

Չեբիշևի Լքստբեմալ խնդբի մասին բաշխումների ուռուցիկ դասերի վրա

Ապացուցված է, որ բաշխման ֆունկցիաների ուռուցիկ, թույլ զուգամիտության խմաստով փակ դասհրի վրա Չեբիշեի էքստրեմալ խնդրում, ռ > Հ տրված ընդ անրացված մոմենտների դեպքում էքստրեմումները հասանելի են դասի (n+1)-ծայրակետհրի վրաւ Արդյունքը ճշդրտված է Լիպշիցի պայմանին բավարարող բաշխման ֆունկցիաների դասի համար։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹ 5 ՈՒՆ

1 Э. А. Даниелян, 1. С. Мовицеян, ДАН АрмССР, т. 89. № 3, (1989). 2 В. Р. Мамукян, Межвуз. сб. научн. трудов. Сер. математика, № 7, Ереван, ЕГУ, 1989. 3 Э. А. Даниелян, Г. С. Мовсисян, К. Р. Таталян, ДАН Армении, 92, № 2, (1991), 4 У. Рудин. Функциональный анализ, Мир, М. 1975.