УДК 52.64

АСТРОФИЗИКА

В. С. Айрапетян. В. В Вихрев, А. Г. Никогосян

О генерации «свободного» магнитного поля при всплытии силовых магнитных трубок в атмосфере Солнца

(Придставлено вкадемиком В А Амбарцумяном 4/IV 1988)

По современным представлениям магнитные поля на Солнце генерируются в конвективных слоях на глубине порядка 10,10 см. Напряженность этих полей не превосходит 300 Гс (1), поскольку в противном случае всплытие магнитных полей происходило бы быстрее, чем это требуется для объяснения многолетнего шикла солнечной активности. Исходя из этой оценки, отношение давления магнитного поля к давлению плазмы в конвективной зоне $\beta^{-1} = B^2/8\pi nkT$ составляет 10^{-3} . При всплытии плазмы с магнитным полем в фотосферные слои величина 3-1 вследствие вмороженности поля в плазму (В ~ //) и уменьшения плотности в становится еще меньше. В результате давление всплывающих магнитных полей в фотосфере должно быть незначительным по сравнению с плазменным давлением, в то время как наблюдения указывают на существование фотосферных магнитных полей, для которых $3^{-1} > 1$ (2). Для объяснения этого факта были предложены, в частности, следующие два механизма усиления магнитного поля: за счет сходящихся потоков плазмы (3) и вследствие опускания охлажденион плазмы внутри вертикальной магнитной трубки (1).

В настоящей работе предлагается другой механизм усиления митнитного поля, связанный с всплытием магнитной силовой трубки из конвективной зоны и появлением «свободного» (очищенного от плазмы) поля. Магнитная энергия в трубке возрастает из-за продольного растяжения ее элементов, которое обусловлено действием выталкивающей силы, возникающей вследствие конвективных движений.

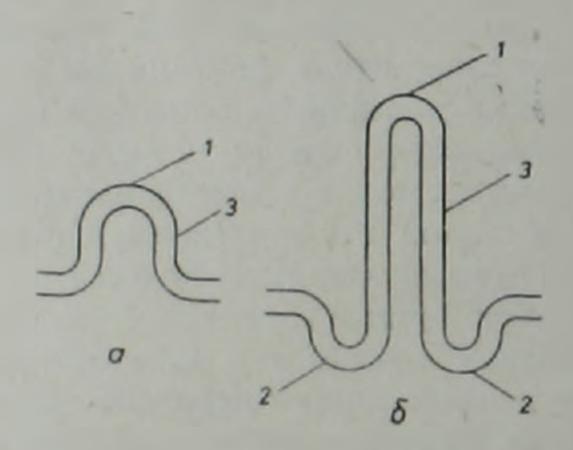
Рассмотрим зависимость относительного давления β^{-1} от степени растяжения трубки l/l_0 . Будем считать, что сумма давлений плазмы внутри трубки и магнитного поля $B^2/8\pi$ уравновешивается давлением плазмы извне

$$P_{lni} + \frac{B^2}{8\pi} = P_{exi}, \tag{1}$$

при этом температура плазмы вне и внутри трубки одинакова. Учитывая постоянство магнитного потока в сечении трубки и числа частиц в ней, получаем, что при растяжении отпосительное давление магнитного поля \mathfrak{p}^{-1} растет пропорционально $(l/l_0)^3$, если $nkT = l_0$, если $nkT \ll B^2/8\pi$. Таким образом, при продольном растяжении трубки ве-

личина 3^{-1} растет как при малых, так и при больших ее значениях Отметим, что такой же зависимостью от l/l_0 характеризуется изменение энергии магнитного поля.

Возможность усиления магнитного поля и его очистки от плазмы при всплытии трубки в атмосфере Солнца связана с тем, что работа, совершаемая выталкивающей силой, оказывается больше энергии магнитного поля этой трубки в нижних конвективных слоях. Действительно, работа, совершаемая силой, действующей на трубку, определяется выражением


$$A = (\rho_{ex} - \rho_{int})g \cdot hV. \tag{2}$$

где g — ускорение свободного падения на поверхности Солица, V — объем трубки, ℓ — высота всплытия. С учетом формулы (1)

$$\frac{n\iota_{H}g \cdot h}{kT} \frac{B^{-}}{8\pi} \tag{3}$$

где m_H — масса атома водорода. Отношение этой работы к энергии магнитного поля, вызывающего всплытие, равно $W = m_H g : h/k I$. Для характерных размеров и температуры конвективной зоны эта величина больше единицы.

Таким образом, если какой-либо участок магнитной трубки в конвективной зоне всплывает несколько быстрее, чем ее остальные части, то это приводит к растяжению трубки и образованию арки (рисунок, а).

Дин илика магнитных силовых грубок при всплытии: а—в начальной стадин; б—в развитой стадин всплытия, /—верхние арки, 2—нижние арки, 3—растягивающиеся участки

магнитной трубки

Неравномерное всплытие магнитной трубки вызывает в гравитационном поле Солнца перераспределение плотности плазмы в ней. В верхних областях арки плотность становится меньше плотности окружающей се среды. В результате для арочных областей появляется выталкивающая сила, которая приводит к продольному растяжению магнитной трубки, способствующему увеличению энергии магнитного поля и повышению значения? 1. Растяжение трубки одновременно ведет и к охлаждению плазмы в ней. Охлаждениая плазма имеет тенденцию пе-

ремещаться в нижние части трубки, прогибая ее, как это показано на рисупке, б, и вызывая тем самым ее дополнительное растяжение.

Описанный механизм может в значительной степени снять трудности, связанные с объяснением появления свободного магнитного поля в верхних слоях солнечной атмосферы.

Бюраканская астрофизическая обсерватория Академии наук Армянской ССР Институт атомной энергии им. Курчатова Академии наук СССР

Վ. Ս. ՀԱՑՐԱՊԵՏՅԱՆ, Վ. Վ. ՎԻԽՐԵՎ, Ա. Գ. ՆԻԿՈՎՈՍՅԱՆ

Արեզակի մինոլորտում մազնիսական ուժային խողովակների արտամղման ժամանակ «ազատ» մագնիսական դայտի առաջացման մասին

յից «մաքրիվում է Արեղակի մինոլորաի վերին շերտերում մագնիսական դաշտի ուժեղացման մի նոր մեխանիզմ, որը կապված է կոնվեկտիվ տիրույ-Առաջարկվում է Արեղական հողովակի արտամղման և «ազատ» (պլազմա-

Մագնիսական դաշտի ուժնղացումը պայմանավորված է նրանով, որ արտամղիչ ուժի կողմից կատարվող աշխատանքը գերազանցում է ստորին կոնվեկս։ իվ տիրույթներում խողովակի մասնիսական դաշտի էներգիան։ Եթե
մագնիսական խողովակի որևէ մի մասը մյուսների նկատմամբ ավելի արագ
է արտամղվում կոնվեկտիվ տիրույթից, ապա նա ձգվում է, առաջացնելով
կամար։ Այդ ան ավասարաչափ արտամղումը Արևգակի գրավիտացիոն դաշտում բերում է նրան, որ խողովակի ներսում պլազման վերաբաշխվում է։
Կամարի վերին մասերում նյութի խտությունը դառնում է շրջապատող միջավայրի խտության նկատմամբ ավելի ցածը։ Արդյունքը լինում է այն, որ
կամարի տիրույթների վրա սկսում է ազդել արտամղիչ ում, որը բերում է
մագնիսական խողովակի երկայնական ձգման, օժանդակելով մագնիսական
դաշտի էներգիայի և 3-1 մեծության արժեքի մեծացմանը։ Խողովակի ձգվելու հետ մեկտեղ նրա մեջ պարունակվող պլազման սառչում է ու շարժվելով
դեպի խողովակի ստորին մասերը, առաջացնում է լրացուցիչ ձգվածություն։

չացման բացատրելու ձետ կապված դժվարությունները։ Արեզակի մինոլորտի վերին շերտերում ազատ մագնիսական դաշտի առա-

ЛИТЕРАТУРА— ЭРИЧИТОВЬЕ 5 ПРТ

1 Е. Паркер, Космические магнитные поля, т. 1. Мир. М., 1982 - Солвечные вспышки, Наука, М., 1982 ³ Е. Parker, Ар. Ј., у. 186, № 643, р. 665 (1973).