ГОКЛАДЫ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

LXXXVI 1988

мДК 519.21

МАТЕМАТИКА

К В. Гаспарян

О мультипликативном разложении экспоненциальных семимартингалов

(Представлено академиком АН Армянской ССР Р. В Амбарцумяном 23/XII 1987)

В работе получено мультипликативное разложение для экспоненты Долеан специальных семимартингалов и доказано, что при некоторых условиях положительная степень экспоненциального семимартингала является экспоненциальным семимартингалом, откуда следует результат о мультипликативном разложении положительной степен экспоненциальных локальных мартингалов. Относительно фильтрации $F = (F_1)_{120}$, заданной на некот ром полном вероятностном пространстве (Ω, F, P) , не требуется выполнения "обычных" предположений полноты и непрерывности справа, а все рассматриваемые семимартингалы и локальные мартингалы считаются опциональными (1).

Упомянутые выше мультипликативные разложения были получены ранее в (2) при "обычных" предположениях на фильтрацию F.

Пусть $X \in S$ —семимартингал с разложением $X = X' + X^g$, где $X' = X^c + X^d$, X^c и X^d (X^g)—непрерывная и чисто разрывная непрерывная справа (слева), имеющая пределы слева (справа) составляющие процесса X (1). Рассмотрим стохастическое уравнение (уравнение Долеан)

$$Z = 1 + Z_{-} \cdot X' + Z \cdot X^{g}, \tag{1}$$

где $Z_{-}=(Z_{I_{-}})_{I>0}$. В классе S уравнение (1) имеет единственное (с точностью до неотличимости) решение $Z=\mathfrak{s}(X)$, задающееся формулой (3)

$$\varepsilon(X)_{t} = \exp\left(X_{t} - \frac{1}{2}\langle X \rangle\right) \prod (1 + \Delta X_{s})e^{-\Delta X_{s}} \prod (1 + \Delta^{*}X_{s})e^{-\Delta^{*}X_{s}}, \quad (2)$$

где X > - квадратическая характеристика непрерывной мартингальной составляющей семимартингала X_* $\Delta X_* = X_* - X_{*-}$, $\Delta^* X_* = X_* - X_*$, $s \ge 0$ (бесконечные произведения в правой части (2) $P - n_*$ н. абсолютно сходятся для любого t > 0).

Лемма 1. Если X, YeS, то

$$\epsilon(X)\epsilon(Y) = \epsilon(X+Y+[X,Y]).$$

(Злесь $|X,Y| = \langle X',Y' \rangle + \sum \Delta X_s \Delta Y_s + \sum_{s < s} \Delta^s X_s \Delta^s Y_s - квадратическая вариация процессов <math>X_s$ и $\langle X^c, \rangle = -$ взаимная ква гратическая хар ктеристика непрерывных маргингальных составляющих семимартингалов X и Y).

Доказательство леммы непосредственно следует из формулы Hro (1)

 $ε(X)ε(Y) = (X)_- ε(Y)_- ε(Y)_- ε(Y)_- ε(Y)_- ε(X)_- ε(Y)_- ε(X)_- ε(X)_- ε(Y)_- ε(Y$

Теорема 1. Пусть $X \in S_p$ —специальный семимартингал с разложением X = N + A где $N \in \mathcal{N}_{\text{tot}}$ —локальный мартингал, $A \in \mathcal{N}_{\text{tot}}$ —сильно предсказуемый процесс (1) локально интегрируе мой вариации на $R = [0, \infty]$ и $\Delta A = -1$, $\Delta^* A \neq -1$. Тогда существует процесс $N \in \mathcal{N}_{\text{tot}}$ такой, что

$$\varepsilon(X) = \varepsilon(X)\varepsilon(X)$$

20e N=(1+2A)-1 · N'+(1+2'A) 1 · NE (N=N'+NE).

Доказательство, Предсказуемый процесс $(1+\Delta A)^{-1}$ и опциональный процесс $(1+\Delta^*A)^{-1}$ —локально ограничены, так как сечения множеств $\left\{|1+\Delta A| \leq \frac{1}{n}\right\}$ и $\left\{|1+\Delta^*A|\right\} \leq \frac{1}{n}\right\}$ не имеют точек накопления в R, для любого $n \geq 1$, т. е. определены стохастические интегралы $(1+\Delta A)^{-1} \cdot N'$ и $(1+\Delta^*A)^{-1} \cdot N'$ (см. (1)). Положим теперь $\bar{N}=(1+\Delta A)^{-1} \cdot N' + (1+\Delta^*A)^{-1} \cdot N^g$, $\bar{N} \in \mathcal{N}_{loc}$. Согласно (4) имеем $|\bar{N}, A| \in \mathcal{N}_{loc}$. С другой стороны очевидно, что $N=\bar{N}+[\bar{N}, A]$, так как $N=\bar{N}'$, $\Delta N=\Delta(\bar{N}+[\bar{N}, A])$, $\Delta^*N=\Delta^*(\bar{N}+[\bar{N}, A])$. Отсюда из леммы 1 имеем, что $\epsilon(X)=\epsilon(\bar{N}+[\bar{N}, A]+A)=\epsilon(\bar{N})\epsilon(A)$.

Теорема 2. Пусть i>0 и процесс $Y \in S$ такой, что $U(t) = [(1-x)^i - 1 - ix]^{-i} \in V$ — процесс ограниченной вариации, i=1,2, где $u^1 u^2$ — целочисленные меры, порожденные скачками процесса Y вида ΔY и $\Delta^i Y$, соответственно. Тогда существует процесс $X(t) \in S$ такой, что

$$\epsilon^{\flat}(Y) = \epsilon(X(/)),$$

$$2 de X(i) = iY + \frac{i(i-1)}{2} < Y^{i} > + \sum_{i \leq 2} U^{i}(i.).$$

Доказательство. Согласно формуле (2) имеем $\varepsilon^{\lambda}(Y)_{t} = \exp\left(iY_{t} - \frac{i}{2} < Y^{c} > \right) \prod (1+\Delta Y_{s}) e^{-\lambda \Delta Y_{s}} \prod (1+\Delta^{s}Y_{s})^{t} e^{-\lambda \Delta^{s}Y_{s}}$. Положим теперь $H_{t} = e^{iY_{t}}$, $K_{t} = \prod (1+\Delta Y_{s})^{t} e^{-\lambda \Delta^{s}Y_{s}} \prod (1+\Delta^{s}Y_{s})^{t} e^{-\lambda^{\Delta^{s}Y_{s}}}$, $L_{t} = e^{-iY_{s}}$

Применяя далее формулу Ито (1), получим $H = 1 + i \cdot H_{-} \cdot Y' + \frac{i}{2}H_{-} \cdot Y'$

жение процесса (5 Полагая теперь $X(\iota) = X(\iota)' + X(\iota)''$, где $X(\iota)'' = X(\iota)'' + X(\iota)''$, где $X(\iota)'' = X(\iota)'' + X(\iota)''$, получим доказательство теоремы 2.

Следствие 1. Пусть i > 0 и задан процесс $Y \in S_p$ с разложением Y = M + B, где $M \in M_{loc}$, $B \in \mathcal{F}$ Погда если процесс $U^i(i) \in M_{loc}$, i = 1, 2, то существует процесс $X(i) \in S_p$ с разложением X(i) = N(i) + A(i), где $N(i) = iM + \sum_{i=1}^{n} (U^i(i)) \in \mathcal{F}_s \cap A_{loc}$ так, что

$$\epsilon'(Y) = \epsilon(X(I)).$$

(Здесь $U^i(i)$) – компенсатор процесса $U^i(i)$, i = 1, 2).

Доказательство следствия 1 непосредственно вытекает из тео емы 2, если положить там Y' = M' - B' и Y' = M'' - B'', где M = M' + M'' + B'' + B''

Следствие 2 (ср. (²)). Пусть i > 0, процесс $Y = M_E$. U_{loc} с $\Delta M > -1$, $\Delta^+ M > -1$ и $T = \inf(t : \Delta M_t = -1)$ или $\Delta^+ M_t = -1$). Тогда если $V^t(t) = U^t(t)^T \in \mathcal{A}_{loc}$, i = 1, 2, то существует процесс $X(t) \in S_p$ с разложением X(t) = N(t) + A(t), где $\Delta A(t) > -1$, $\Delta^+ A(t) > -1$ и N(t) = -1 $M + \sum_{i \in \mathbb{Z}} (V^i(t) - V'(t)) \in \mathcal{U}_{loc}$, $\overline{A}(t) = \frac{i(t-1)}{2} < M^c > T + \sum_{i \in \mathbb{Z}} V^i(t) \in \mathcal{I}$.

$$\varepsilon^{\lambda}(M) = \varepsilon(N(r)) (-1(r))$$

 $N(r) = (1 + \Delta \overline{A}(r))^{-1} \cdot \overline{N}(r)^r + (1 + \Delta^* \overline{A}(\lambda))^{-1} \cdot \overline{N}(r) \in \mathcal{N}(r)^r = U^*(r)_{t \wedge T} + \text{остановленный в момент } T \text{ процесс} \qquad (i = 1, 2).$

Доказательство. Согласно следствию 1 имеем $\varepsilon^{\lambda}(M) = (X(\cdot))$. Легко видеть, что $\varepsilon(X(\iota)) = \varepsilon(\overline{X}(\lambda))$, так как $X(\iota) = \overline{X}(\iota)$ на $[[0,T][\cdot] = \varepsilon(X(\lambda)) = \varepsilon(X(\lambda))$

$$\Delta \bar{A}_{S_1}(\lambda) = E[\Delta \bar{X}_{S_1}(\lambda)|\bar{F}_{S_1}] - E[(1 + \Delta M_{S_1})^{\lambda} - 1|\bar{F}_{S_1}],$$

$$\Delta^* \bar{A}_{S_2}(\lambda) = E[\Delta^* \bar{X}_{S_2}(\lambda)|\bar{F}_{S_1}] - E[(1 + \Delta^* M_{S_2})^{\lambda} - 1|\bar{F}_{S_2}]$$

следует, что

$$E(1+\Delta M_{S_1})^* I_{S_1 < \infty} = E(1+\Delta \bar{A}_{S_1}(I)) I_{S_1 < \infty} < 0,$$

$$E(1+\Delta^* M_{S_1})^* I_{S_1 < \infty} = E(1+\Delta^* \bar{A}_{S_1}(I)) I_{S_1 < \infty} < 0,$$

т. е. $\Delta M_{S_1} = -1$ на $(S_1 < \infty)$, $\Delta^+ M_{S_2} = -1$ на $(S_2 < \infty)$ и значит, $S_1 \ge T$ и $S_2 \ge T$. Далее имеем

$$0 = E[\Delta M_{S_1}/S_{1 < \infty} + \Delta^{+}M_{S_1}/S_{1 < \infty}] = E[\Delta M_{S_1}/T_{-S_1 < \infty} + \Delta^{+}M_{S_2}/T_{-S_2 < \infty}] = -P(T = S_1 < \infty) - P(T = S_2 < \infty),$$

так как $(T < S_1 < \infty) \in F_{S_1}$ и $(T < S_2 < \infty) \in \mathbb{R}$. Таким образом $S_1 > T$ и $S_2 > T$. Но так как $\Delta A(x) = \Delta^* A(x) = 0$ на $||T, \infty||$, то отсюда получим, 69

что $\Delta A(r) > 1$ и $\Delta' A(k) > -1$. Для завершения доказательства следествия 2 применим теорему 1.

Следствие 3 (ср. (2)). Пусть $\langle 1 u npoцесс Y = Me. u_{loc} c \Delta M -1, \Delta^{*}M -1$. Тогда существует процесс $\overline{X}(\lambda) \in S_{p}$ с разложением $\overline{X}(\iota) = \overline{X}(\iota)$ $A(\iota)$ так, что

$$\varepsilon^{\lambda}(M) = \varepsilon(N(I))\varepsilon(A(I)),$$

где процессы A(t) и N(t) такие же, как в следствии 2, а $\epsilon(A(t))>0$ —убывающий процесс $\epsilon(A(t))_0=1$.

Деказательство. Так как процессы V(r) $\in A_{loc}$, i=1,2 (см. $(^2)$). то согласно следствию 2 имеем $\epsilon'(M) - \epsilon(N(r))\epsilon(A(r))$, где 2A(r) > -1 и 2A(r) > -1, т. ϵ . процесс $\epsilon(A(r)) > 0$. Однако, так как $\epsilon(A(r)) - \epsilon(A(r)) -$

Замечание. Мультипликативное разложение, получение в следствии 3, существенно используется для получения достаточных, близких к неулучшаемым условий равномерной интегрируемости экспоненциальных мартингалов

Ереванский политехнический институт им К. Маркса

процесс $\varepsilon(A(I))$ убывающий и $\varepsilon(A(I))_0 = 1$.

կ. Վ. ԿԱՍՊԱՐՏԱՆ

կքսպոնենցիալ սեմիմաբտինգալների մուլ<mark>տիսլլիկատիվ</mark> վերլուծության մասին

վրվում են օպցիոնալո արտարան գրում, որպեսզի նա բավարարի «սովորական» պայմանների, իսկ արտարակվող սեմիմարտինդալները և լոկալ մարտինդալները ենթա-

ЛИТЕРАТУРА — ЧРИЧИКОГЬ Р 5 П Р С

1. Л. Н. Гальчук, Мат. сб., т. 112 (154), № 1(8) (1980). 2 D. Lepingle, Л. Метип. Z. Wahrsch. verw. Geb., Вд. 42 (1978). 3 Л. Н. Гальчук, Теория вероятностей и ее применения, т. 29, № 1 (1984). 1 К. В. Га п. рян, в кил. Труды ВП АН АрмССР и ЕГУ, т. 15 (1988). 5 К. В. Гаспарян, ХХІ школа-коллоквиум по теории вероятностей и мат. статистике, Тезисы докладой, Тбилиси, 1987.

--- ---