LXXXV 1987

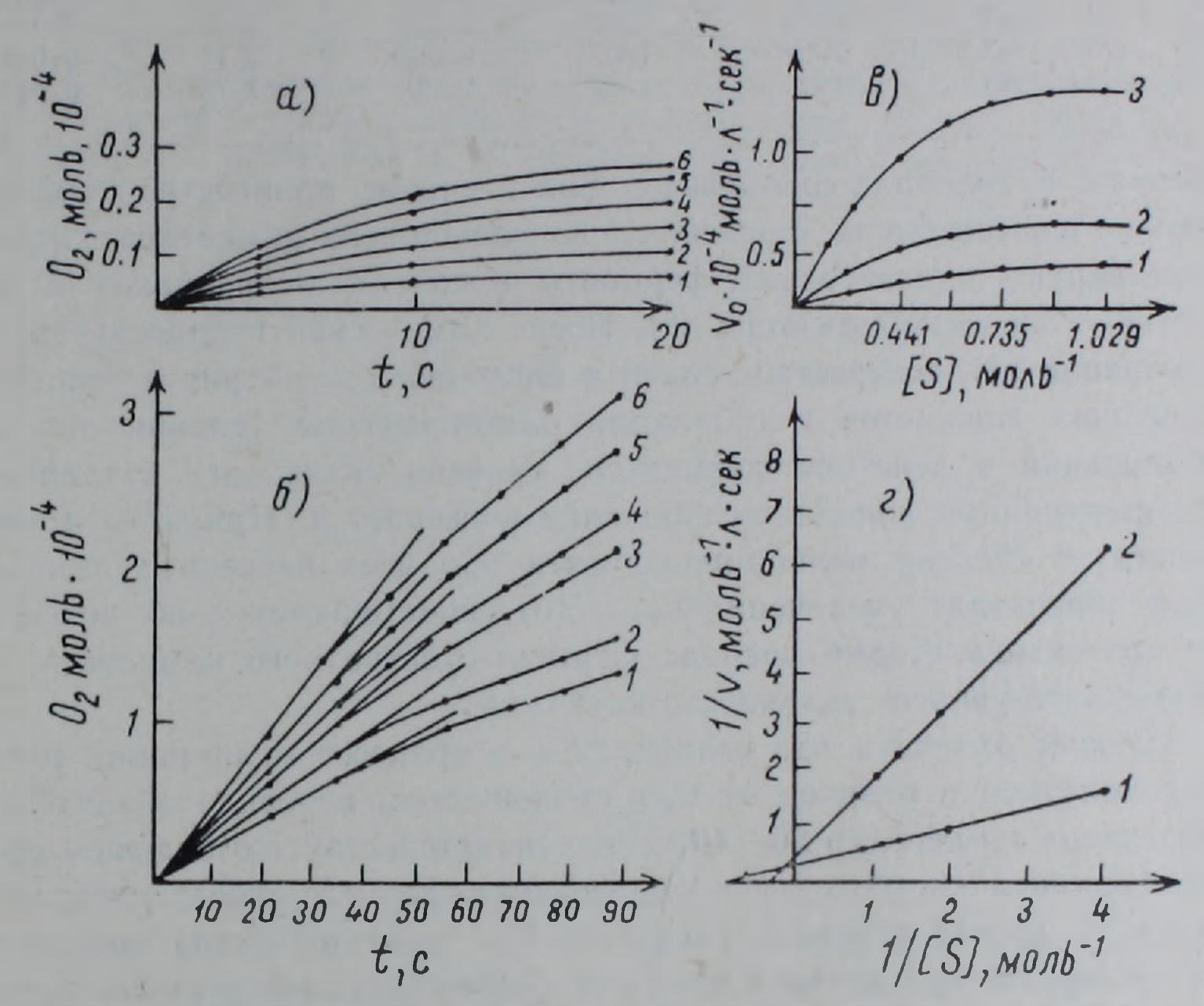
УДК 631.465

АГРОХИМИЯ

А. Ш. Галстян , С. А. Абрамян, С. М. Араксян

Кинетика действия каталазы в мелиорированных солонцах-солончаках

(Представлено академиком АН Армянской ССР Э. К. Африкяном 6/VII 1987)


Кинстика действия каталазы в солонцах-солончаках до и после мелиорации не изучена. Для направленной регуляции ферментативных процессов в почве важное значение имеет установление кинетических показателей и их взаимосвязи с различными факторами, влияющими на уровень биологической активности почв (1-4). Исходя из этого в настоящей работе ставилась цель определить кинетические показатели каталазной реакции в содовых солонцах-солончаках и их мелиорированных вариантах.

В основе изучения кинетики ферментативных реакций в почве лежит количественное описание их скоростей с помощью молекулярных представлений и законов стационарной химической кинетики (3 4). Такой подход имеет важное значение для выявления механизма действия почвенных ферментов.

Исследования проводили на содовом солонце-солончаке Араратской равнины (0-25 см), гумус 0.5%, pH 10.2, сумма обменных катионов 17,5 мэкв на 100 г почвы, сумма солей 3,8%; недомелнорированном солонце-солончаке (0-25 см), гумус 0,7%, рН 9,0, сумма обменных катионов 23,2 мэкв, сумма солей 0,6%; мелиорированном солонце-солончаке (0-25 см), гумус 1,3%, рН 7. 6, сумма обменных катнонов 29,5 мэкв, сумма солей 0,25%. Активность каталазы определяли по Галстяну (5) в течение 10, 20, 30, 40, 50, 60 с при различных тем ературах—10, 20, 30, 40, 50, 60° C. Для этой цели подготовленную почву и субстрат выдерживали при указанных температурах в течение 3 ч, затем проводили определение. Исходя из принципа определения начальных скоростей образования продукта реакции (V_0) измерение активности проводили при различных концентрациях субстрата-0,294, 0,441, 0,588, 0,735, 0,882 и 1,029 моль/л. Полученные данные использовали для графического расчета К и V пах с применением линейной трансформации уравнения Михаэлиса-- Ментен, предложенной Лайнуивером — Берком (3).

На основании проведенных отределений строили кинетические кривые выделения O_2 при каталазной реакции в солонцах-солончаках и их мелиорированных вариантах (рисунок, a, δ). Проводили касательные к начальным участкам полученных кинетических кривых и по тангенсу угла их наклона определяли начальные скорости каталазной реакции при различных концентрациях субстрата. Выявлено, что меха-168

инзм ферментативного разложенця H_2O_2 в солонцах-солончаках и их мелиорированных вариантах подчиняется уравнению Михаэлиса— Ментен. Об этом свидетельствует тот факт, что при низких концентрациях субстрата скорость реакции пропорционально возрастает и реакция протекает по первому порядку, а при высоких концентрациях скорость перестает зависеть от концентрации субстрата и реакция протекает по уравнению нулевого порядка (рисунок, θ).

Кипетические привые каталазной реакции в солонце-солончаке до и после мелиорации при температуре 20° С. а—до мелиорации, б—после мелиорации; концентрация перекиси водорода: 1—0,294, 2—0,441, 3—0,588, 4—0,735, 5—0,882, 6—1,029 моль/л; в—скорость реакции в зависимости от концентрации субстрата: 1—солонец-солончак, 2—недомелиорованный солонец-солончак, 3—мелиорированный солонец-солончак: г—начальная скорость в зависимости от концентрации субстрата в координатах уравнения Лайнуньера-Берка: 1—мелиорированный солонец-солончак, 2— солонец-солончак

Полученные зависимости между скоростью реакции и концентрацией субстрата трансформировали в уравнение Лайнунвера—Беркт, которое позволяет представить результаты изучения кинетики ферментативных реакций в виде прямых линий. При построении графика в координатах 1/V, 1/S получаем прямую линию с наклоном, равным $K_m/V_{\rm max}$, пересска шкую ось 1/V в точке $1/V_{\rm max}$, а ось 1/S-в точке $1/K_m$ (рисунок, г).

Рассчитаны K_m и $V_{\rm вид}$ каталазной реакции в солонцах-солончаках и их мелнорированных вариантах (таблица). Приведенные данные по-казывают, что $V_{\rm max}$ значительно возрастаєт в процессе мелиорации солонцов-солончаков. Сравнительно пизкие значения $V_{\rm max}$ в солонцах-солончаках свидетельствуют о меньшей вероятности протекация каталазной реакции. Подтверждением этому является низкая активность 169

Темпера-	Солонец-солончак		Недомелиорированный солонец-солончак		Мелиорированный соло- нец-солончак	
	V max, М • л-1 · c-1	Кт, М - л-1	V_{max} , $M \cdot \pi^{-1} \cdot c^{-1}$	K_m , $M \cdot n^{-1}$	V_{max} , $M \cdot \pi^{-1} \cdot c^{-1}$	$K_m, M \cdot \pi^{-1}$
10 20 30 40	0.54 1.05. 1.43 1.54	0.13 0.18 0.19 0.06	1.10 1.43 1.67 1.89	0.150 0.120 0.066 0.036	1.35 1.85 2.17 2.78	0.050 0.049 0.048 0.047

каталазы в солонцах-солончаках. Значительное количество солей и высокая насыщенность почвенного поглощающего комплекса натрием инактивируют внеклеточные ферменты в солонцах-солончаках и препятствуют их иммобилизации (6). После химической и опреснительной мелиорации рН содержание солей и поглощенного натрия в солонцах-солончаках снижается и создаются благоприятные условия для иммобилизации и действия ферментов. Уровень активности каталазы в мелиорированных солонцах-солончаках певышается. При этом в зависимости от степени мелиорированности при всех изученных температурах происходит увеличение $V_{\rm max}$. Это свидетельствует об интенсивном протекании стадии распада фермент-субстратного комплекса, лимитирующей уровень активности каталазы.

Следует отметить, что величина K_m в процессе мелиорации солонцов-солончаков в отличие от V_{max} уменьшается, особенно значительно в интервале температур $20-40^{\circ}\mathrm{C}$, что свидетельствует о большем сродстве фермента к субстрату и образовании фермент-субстратного комплекса. С другой стороны, поскольку K_m численно равна концентрации субстрата, при которой скорость ферментативной реакции составляет половину максимальной, можно утверждать, что эта скорость в мелнорированных солонцах-солончаках будет достигнута при более низкой концентрации субстрата.

Таким образом, механизм действия каталазы в солонцах-солончаках и их мелиорированных вариантах подчиняется уравнению Михаэлиса—Ментен. В основе возрастания активности каталазы в мелиорированных солонцах-солончаках лежит сопряженное изменение констант Михаэлиса—Ментен—уменьшение C_m и возрастание V_{\max} , что может служить важной характеристикой каталазной реакции в этих почвах.

Научно-исследовательский институт почвоведения и агрохимии Госагропрома Армянской ССР Ереванский зооветеринарный институт

Ա. Շ. ԳԱԼՍՏՅԱՆ , Ս. Ա. ԱՐՐԱՀԱՄՅԱՆ, Ս. Մ. ԱՐԱՔՍՑԱՆ

Կատալազայի գուծունեության կինետիկան մելիուացված աղուտ–ալկալի նողեւում

Հաստատված է, որ կատալաղայի դործուննության կիննտիկան աղուտայկալի շողնրում և նրա մելիորացված տարբերակներում ենթարկվում է 170 Միխանլիս-Մենտննի հավաստրմանը։ Մելիորացված աղուտ-ալկալի հողնրում կատալաղայի ակտիվության K_m -ն փոքրանում է, V_{\max} -ը մեծանում է, վերջիններս այդ հողերը բնութագրող կարևոր ցուցանշաններ են։

ЛИТЕРАТУРА-ԳРИЛИИ В ОТРВОТЬ

¹ С. А. Алиев, Д. А. Гаджиев, Ф. Д. Микайлсв, Почвоведение, № 9, 1981. ² М. Г. Геворкян, А. Ш. Галстян, А. А. Петросян и др., Биол. жури. Армении, т. 35, № 4 (1983). ³ В. А. Яковлев, Кинетика ферментативного катализа, Наука, М., 1965. ⁴ А. Ленинджер, Основы биохимии, Мир. М., 1985. ⁵ А. Ш. Галстян, Определение активности ферментов почв (Методические указания), Ереван, Изд-во МСХ, 1978. ⁶ С. А. Абрамян, А. С. Оганесян А. Н. Баграмян и др., Биол. жури. Армении, т. 31, № 10 (1978).