1987

LXXXV

УДК 519.248

МАТЕМАТИКА

М. Р. Мартиросян

Об условиях аналитической зависимости слабо возмущенного гауссовского гиббсовского поля от параметров возмущения

(Представлено академиком АН Армянской ССР Р. В. Амбарцумяном 8/V 1987)

Одной из основных задач теории гиббсовских случайных полей является нахождение точек фазового перехода. Известный подход Янга и Ли к решению этой задачи отождествляет точки фазового перехода с предельными точками нулей статистических сумм при стремлении объема к бесконечности. В настоящей заметке рассматриваются малые возмущения (при помощи потенциала U с бесконечным радиусом взаимодействия) гиббсовского гауссовского случайного поля. Указывается условие малости возмущаемого потенциала, при котором статистические суммы не обращаются в ноль. Отсюда вытекает также аналитичность свободной энергии как функции от параметров возмущения.

Пусть Z'-у-мерная целочисленная решетка с метрикой

$$d(x^{(1)}, x^{(2)}) = \sum_{i=1}^{n} |x^{(1)} - x^{(2)}|, x^{(j)} = (x^{(j)}, \dots, x^{(j)})(Z^{n}, j = 1, 2)$$

и R^k-k -мерное линейное пространство со стандартным скалярным произведением. Элементы множества $(R^k)^{\Lambda}$, $\Lambda \subset Z^{\nu}$, будем называть конфигурациями на Λ .

Гауссовское гиббсовское поле в объеме Λ (под объемом понимается конечное подмножество Z') задается при помощи теплицевой $k|\Lambda|\times k|\Lambda|$ -матрицы ($|\Lambda|$ —число точек в объеме Λ) Φ^{Λ} , относительно элементов которой мы будем предполагать, что $\Phi^{\Lambda}_{s,t}=0$ при d(s,t)>r, где r>0—фиксированное число (радиус взаимодействия). Кроме того будем считать выполненным так называемое условие "положительности массы" $Q\sum_{t\in\Lambda}|x_t|^2 \leqslant \sum_{s,t\in\Lambda}(\Phi^{\Lambda}_{s,t}x_s,x_t)$ с некоторым Q>0. Пусть

 $\Lambda^c = Z^* \setminus \Lambda$, $\partial \Lambda = \{t \in \Lambda : \mathrm{dist}(t, \Lambda) \leq r\}$. Для произвольного объема Λ и конфигурации $\tau \in (\mathbb{R}^k)^{\partial \Lambda}$ (граничное условие) плотность гауссовского гиббсовского распределения вероятностей в объеме Λ задается формулой

$$P_{\tau}^{\Lambda}(x_{\Lambda}) = \left[Z_{\Lambda}(\Phi^{\Lambda}, \tau)\right]^{-1} \exp\left\{-\frac{1}{2} \sum_{s,t \in \Lambda} (\Phi_{s,t}^{\Lambda} x_{s}, x_{t}) - \sum_{s \in \Lambda, u \in \partial \Lambda} (\Phi_{s,u}^{\Lambda} x_{s}, \tau_{u})\right\},\,$$

где статистическая сумма

$$Z_{\Lambda}(\Phi^{\Lambda}, \tau) = \int_{(R^k)^{\Lambda}} \exp\left\{-\frac{1}{2} \sum_{s,t \in \Lambda} (\Phi^{\Lambda}_{s,t} x_s, x_t) - \sum_{s \in \Lambda, u \in \partial \Lambda} (\Phi^{\Lambda}_{s,u} x_s, \tau_u)\right\} dx_{\Lambda}.$$

Плотность P_{τ}^{Λ} можно представить в виде

$$P_{\tau}^{\Lambda}(x_{\Lambda}) = \left(\frac{\det \Phi^{\Lambda}}{\pi^{k|\Lambda|}}\right)^{\frac{1}{2}} \exp\{-(\Phi^{\Lambda}(x_{\Lambda} - \overline{x}_{\Lambda}(\tau)), x_{\Lambda} - \overline{x}_{\Lambda}(\tau))\}$$

где $x_{\Lambda} = (x_t, t \in \Lambda)$ и $x_{\Lambda}(\tau)$ —решение системы линейных уравнений $\sum_{t \in \Lambda} \Phi_{s,t}^{\Lambda} \bar{x}_t + \sum_{u \in \partial \Lambda} \Phi_{u,s}^{\Lambda} \tau_u = 0$, $s \in \Lambda$.

Пусть \mathcal{F} —класс всевозможных отображений $F: \bigcup (R^k)^A \to \bigcup (R^k)^A$ таких, что $F(x_A) \in (R^k)^A$. Пусть $A \subset Z^{\vee}$ и $\sigma \in (R^k)^A$. Обозначим через I_{σ} отображение из класса \mathcal{F} такое, что $I_{\sigma}(x) = x_{B \cap A^c} \cup \sigma_{B \cap A}$ для любых $B \subset Z^{\vee}$, $x \in (R^k)^B$ ($x_{B \cap A^c}$, $\sigma_{B \cap A}$ —суть ограничения конфигураций x и σ на соответствующие множества). Для произвольного $F \in \mathcal{F}$ через $\sup_{Z^{\vee}} F$ обозначим множество всех точек $t \in Z^{\vee}$ таких, что для некоторых $A \subset Z^{\vee}$, $t \in A$ и $x_A^{(1)}$, $x_A^{(2)} \in (R^k)^A$ —конфигураций, отличающихся лишь в точке t, $F(x_A^{(1)}) \neq F(x_A^{(2)})$.

Рассмотрим комплекснозначный потенциал

$$U = \{ U_A(x_A), \ A \subset Z^{\vee}, \ |A| < \infty, \ x_A \in (\mathcal{R}^k)^A \}$$
 (1)

и для произвольного $F \in \mathcal{F}$ определим потенциал U^F системой равенств $U_A^F(x_A) = U(F(x_A))$, $A \subset Z^{\vee}$, $|A| < \infty$, $x_A \in (R^k)^A$. Пусть $V \subset Z^{\vee}$ —произвольный объем и $F \in \mathcal{F}$ с $\sup_{Z^{\vee}} F \subset V$. Условным гамильтонианом (энергией) для потенциала U (в объеме V, при условии F) назовем величину

$$H_U(x_V|F) = \sum_{A \subset Z} U_A^F(x_{A \cap V}). \tag{2}$$

Пусть далее $\tau \in (\mathbb{R}^k)^{\partial V}$ —граничное условие. Условной статистической суммой, отвечающей потенциалу U (в объеме V, при условиях F и τ) назовем величину

$$Z_{V}(U|F,\tau) = \int \exp\{-H_{U}(x_{V}|F)\}P_{\tau}^{V}(x_{V})dx_{V}. \tag{3}$$

В соответствии с этим гамильтониан $H_{\phi+U}(x_V|F,\tau) = H_U(x_V|F) + \frac{1}{2} \sum_{s,t \in V} (\Phi_{s,t}^V x_s, x_t) + \sum_{s \in V, u \in \partial V} (\Phi_{s,u}^V x_s, \tau_u)$ можно трактовать как энергию

возмущенного (при помощи потенциала U) гауссовского поля и величину $Z_V(\Phi+U|F,\tau)=Z_V(\Phi^v,\tau)Z_v(U|F,\tau)$ как статистическую сумму, отвечающую потенциалу $\Phi+U$ (в объеме V, при условиях F и τ)

Сформулируем основной результат.

Теорема 1. Пусть потенциал (1) удовлетворяет условию

$$\sum_{A \subset Z': t \in A} \|U_A\| \exp\{x|A|\} < \gamma_t, \ t \in Z',$$
 (4)

где *>0—некоторое фиксированное число, 0<<<1, $t\in Z$, и $\|U_A\|=$

 $=\sup_{x_A\in(\mathbb{R}^k)A}|U_A(x_A)|$. Тогда существуют константы С и γ , зависящие

лишь от x и характеристик v, k, r и Q основного гауссовского поля, такие, что равномерно по всем Λ и внешним условиям $F \in \mathcal{F}$ c supp $z^v F \subset \Lambda$

$$|\operatorname{Ln} Z_{\Lambda}(U|F, \tau=0)| \leqslant C \sum_{i \in \Lambda} \gamma_i,$$
 (5)

если только (x) $t\in Z$ (логарифм в (5) понимается в смысле главного значения).

Следствие. Пусть потенциал $U(z_1,\ldots,z_m)$ зависит от комплексных параметров z_1,\ldots,z_m , причем в некоторой области $D \subset C^m$ значений этих параметров, представляющей собой поликруг с центром в нуле, все функции $U_A(x_A;z_1,\ldots,z_m)$, $A \subset Z^{\gamma}$, $|A| < \infty$, $x_A \in \mathbb{C}(R^k)^A$ аналитичны и при $(z_1,\ldots,z_m) \in D \cap R^m$ вещественны. Тогда, если потенциал $U(z_1,\ldots,z_m)$ удовлетворяет условию (4) и γ достаточно мало, то свободная энергия

$$F(z_1,\ldots,z_m)=\lim_{\Lambda\to\infty}|\Lambda|^{-1}\ln Z_{\Lambda}(\Phi+U|F,\tau=0)$$

существует и является аналитической функцией в D.

Оценка (4) является в некотором смысле неулучшаемой, а именно, справедлива

Теорема 2. Пусть $\varphi: Z^+ \to R^+$, причем при всех х>0

$$\lim \varphi(n) \exp\{-\pi n\} = 0.$$

Тогда для любого $\gamma > 0$ существует потенциал $U^{(\gamma)} = \{U^{(\gamma)}(x_A), A \subset Z^*, x_A \in (\mathbb{R}^k)^A\}$ такой, что

$$\sum_{A:t\in A} \|U_A^{(\gamma)}\|\varphi(|A|) < \gamma, \ t\in Z^{\gamma}$$

и для некоторой последовательности объемов $\Lambda_n \to \infty$ (в смысле Ван Хова)

$$Z_{\Lambda_n}(\Phi + U|F_{\Lambda_n}^0, \tau=0)=0,$$

где $F_{\Lambda n}^0$, n=1,2,... таковы, что ограничение любой конфигурации $F_{\Lambda n}^0(x_A)$ на Λ_n^c равно 0.

Доказательство теоремы I основано на получении индуктивных (по величине объема) оценок статистических сумм и соотношений между ними.

Отметим, что аналогичный результат для моделей с компактным множеством значений в случае независимого возмущаемого поля был получен ранее в (1) методом кластерных разложений. Кроме того, в (1) исследовались возмущения специального вида.

В заключение автор выражает благодарность Р. Л. Добрушину за постановку задачи и полезные обсуждения.

Вычислительный ценгр Академии наук Армянской ССР и Ереванского государственного университета

Թույլ գոգոված գաուսյան գիբսյան դաշտի անալիտիկ կախվածությունը գոգոման պառամետոներից

ոււմները կոմպլերը-արժեր գաուպան դիրպան դաշտերի ոչ ֆինիտ գրգը-Սշխատանըում դիտարկվում են Հ՛– չ-չափանի տմրողջութեիվ ցանցի

$$U = \{U_A(x_A), x_A \in (\mathbb{R}^k)^A, \operatorname{card}(A) < \infty\}$$

պատենցիալի միջոցով։ Ցույց է տրվում, որ եթե Ս դրդոող պոտենցիալը

$$\sum_{A:t\in A} |U_A| \exp\{x|A|\} < \gamma_t < \gamma$$

պալմանին (ինչ-որ x>0 և γ -ի համար), ապա վիճակադրական գումարը հաշվասար չէ 0-իւ Ալստեղից հետևվում է աղատ էներդիայի գոյությունը։ Բացի արդ, եթև բոլոր $U_A(x_A)$, $A \subset Z^*$, $x_A \in (R^k)^A$ անալիտիկորեն կախված են z_1, \ldots, z_n պարամևտրներից, վերջիններիս փոփոխման $D \subset C^n$ տիրությում (D-ն պոլիշրջան է), ապա նույն հատկությամբ օժաված է նաև աղատ էներգիան։

ЛИТЕРАТУРА— ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ В. А. Мальшев, Р. А. Минлос, Гиббсовские случайные поля. Метод кластерных разложений, Наука, М., 1985.