LXXXIV 1987

УДК 551.2

ГЕОМЕХАНИКА

Л. С. Казарян

Устойчивость земной литосферы за пределами упругости

(Представлено академиком АН Армянской ССР А. Т. Асланяном 5/11 1987)

Модель литосферной плиты, потерявшей первоначальную форму, имитируется с механической точки зрения моделью пластинки на упругом основании, которая теряет устойчивость в упругопластической зоне.

В настоящей работе на основе деформационной теории пластичности исследуется устойчивость пластины на упругом основании, нагруженной со всех сторон.

В качестве механических соотношений принимаются уравнения деформационной теории пластичности несжимаемого тела (1):

$$\sigma - \frac{1}{2}\sigma_y = \frac{\sigma_i}{l_i} l_x; \quad \sigma_y = \frac{1}{2}\sigma_x = \frac{\sigma_i}{l_i} l_y; \quad \tau_{xy} = \frac{\sigma_i}{3l_i} l_{xy}, \quad (1)$$

где l_x , l_x , l_y , l_{xy} являются компонентами напряжений и деформаций, через которые определяются соответствующие интенсивности:

$$\sigma_{i} = \sqrt{\sigma_{x}^{2} - \sigma_{x}\sigma_{y} + \sigma_{y}^{2} + 3\tau_{xy}^{2}};$$

$$l_{i} = \frac{2}{\sqrt{3}} \sqrt{l_{x}^{2} + l_{x}l_{y} + l_{y}^{2} + \frac{1}{4}l_{xy}^{2}}.$$
(2)

Далее предполагается, что у пластинки начальное напряженное со стояние—плоское.

При выпучивании напряжения в пластинке получают бесконечно малые прирашения $\delta \sigma_x$, $\delta \sigma_y$, $\delta \sigma_{xy}$. Принимая гипотезу непрерывного нагружения (2), согласно которой искривление пластинки происходит в условиях возрастания нагрузки, и исходя из (1) для вариаций $\delta \sigma_x$, $\delta \sigma_y$ и $\delta \sigma_y$ получим (3):

$$\delta \sigma_{x} = a_{11} \delta l_{x} + a_{12} \delta l_{y} + a_{13} \delta l_{xy};$$

$$\delta \sigma_{y} = a_{21} \delta l_{x} + a_{22} \delta l_{y} + a_{23} \delta l_{xy};$$

$$\delta \tau_{xy} = a_{31} \delta l_{x} + a_{32} \delta l_{y} + a_{33} \delta l_{xy},$$
(3)

в которых

$$a_{11} = \frac{4}{9l_{l}} \left[3\sigma_{i} + (2l_{x} + l_{y})^{2} \frac{d}{dl_{i}} \left(\frac{\sigma_{i}}{l_{i}} \right) \right];$$

$$a_{12} = \frac{2}{9l_{i}} \left[3\sigma_{i} + 2(2l_{x} + l_{y})(2l_{y} + l_{x}) \frac{d}{dl_{i}} \left(\frac{\sigma_{i}}{l_{i}} \right) \right];$$
(4)

$$a_{13} = \frac{2}{9l_i} l_{xy} (2l_x + l_y) \frac{d}{dl_i} \left(\frac{\sigma_i}{l_i}\right); \quad a_{22} = \frac{4}{9l_i} \left[3\sigma_i + (2l_y + l_x) \frac{d}{dl_i} \left(\frac{\sigma_i}{l_i}\right)\right];$$

$$a_{23} = \frac{2}{9l_i} l_{xy} (2l_y + l_x) \frac{d}{dl_i} \left(\frac{\sigma_i}{l_i}\right); \quad a_{33} = \frac{1}{9l_i} \left[3\sigma_i + l_{xy}^2 \frac{d}{dl_i} \left(\frac{\sigma_i}{l_i}\right)\right]; \quad a_{ij} = a_{ji}.$$

Используя формулы Коши для вариаций, имеем

$$\delta l_x = \frac{\partial \delta u_x}{\partial x}; \quad \delta l_y = \frac{\partial \delta u_y}{\partial y}; \quad \partial l_{xy} = \frac{\partial \delta u_x}{\partial y} + \frac{\partial \delta u_y}{\partial x}, \tag{5}$$

где

$$\partial u_x = -z \frac{\partial w}{\partial x}; \quad \partial u_y = -z \frac{\partial w}{\partial y}. \tag{6}$$

и преобразуя (5), получим

$$\delta l_x = -z \frac{\partial^2 w}{\partial x^2}; \quad \delta l_y = -z \frac{\partial^2 w}{\partial y^2}; \quad \delta l_{xy} = -2z \frac{\partial^2 w}{\partial x \partial y}.$$

Внеся значения деформаций, выраженных через перемещения, из (6) в (3), получаем приращения напряжений

$$\delta \sigma_{x} = -z \left(a_{11} \frac{\partial^{2} w}{\partial x^{2}} + a_{12} \frac{\partial^{2} w}{\partial y^{2}} + 2a_{13} \frac{\partial^{2} w}{\partial x \partial y} \right);$$

$$\delta \sigma_{y} = -z \left(a_{12} \frac{\partial^{2} w}{\partial x^{2}} + a_{22} \frac{\partial^{2} w}{\partial y^{2}} + 2a_{23} \frac{\partial^{2} w}{\partial x \partial y} \right);$$

$$\delta \tau_{xy} = -z \left(a_{13} \frac{d^{2} w}{dx^{2}} + a_{23} \frac{\partial^{2} w}{\partial y^{2}} + 2a_{33} \frac{\partial^{2} w}{\partial x \partial y} \right),$$

$$(7)$$

а приращения изгибающих моментов определяются по формулам

$$\delta M_x = \int z \delta \sigma_x dz; \quad \delta M_v = \int z \delta \sigma_y dz; \quad \delta H = \int z \delta \tau_{xy} dz. \tag{8}$$

Уравнения равновесия дифференциального элемента пластинки послевыпучивания имеют вид (4)

$$\frac{\partial \delta M_x}{\partial x} + \frac{\partial \delta H}{\partial y} = N_1; \quad \frac{\partial \delta M_y}{\partial y} + \frac{\partial \delta H}{\partial x} = N_2 \tag{9}$$

$$\frac{\partial \delta N_1}{\partial x} + \frac{\partial \delta N_2}{\partial y} + T_x \frac{\partial^2 w}{\partial x^2} + T_y \frac{\partial^2 w}{\partial y^2} + 2S \frac{\partial^2 w}{\partial x \partial y} = \overline{q}. \tag{10}$$

При расчете поперечно-нагруженной пластинки, покоящейся на упругом основании, кроме действующей нагрузки, необходимо учитывать силы реакции, передающиеся от основания к пластинке.

Интенсивность реакции основания эквивалентна силе плавучести, возникающей в результате замещения слоя мантийной породы толщины \boldsymbol{w} коровой породой, и равна $k\boldsymbol{w}$. Исходя из изостатистических законов под k понимается умножение разности плотностей слоев на ускорение $g[k=g(p_m-p_c)]$ (5), и следовательно, поверхностная нагрузка, действующая на континентальную литосферу, $q=q-k\boldsymbol{w}$.

Подстановкой (9) в (10) получаем следующее уравнение:

$$\frac{\partial^2 \delta M_x}{\partial x^2} + 2 \frac{\partial^2 \delta H}{\partial x \partial y} + \frac{\partial^2 \delta M_y}{\partial y^2} + T_x \frac{\partial^2 w}{\partial x^2} + T_y \frac{\partial^2 w}{\partial y^2} + S \frac{\partial^2 w}{\partial x \partial y} = q - kw. \tag{11}$$

Значения начальных тангенциальных сил берутся в виде

$$T_x = -h\sigma_x; \quad T_y = -h\sigma_y; \quad S = -h\tau_{xy}. \tag{12}$$

Далее, подставляя значения изгибающих моментов из (8), а начальные тангенциальные силы из (12) в уравнение (11) и считая, что поверхностная нагрузка отсутствует, дифференциальное уравнение равновесия после некоторых упрощений и группировок можно привести к виду

$$\frac{h^{3}}{12} \left[a_{11} \frac{\partial^{4} w}{\partial x^{4}} + a_{22} \frac{\partial^{4} w}{\partial y^{4}} + 2(a_{12} + 2a_{33}) \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}} + 4a_{13} \frac{\partial^{4} w}{\partial x^{3} \partial y} + 4a_{33} \frac{\partial^{4} w}{\partial x \partial y^{3}} \right] - h_{3x} \frac{\partial^{2} w}{\partial x^{2}} - 2h_{7xy} \frac{\partial^{2} w}{\partial x \partial y} - h_{9y} \frac{\partial^{2} w}{\partial y^{2}} + kw = 0.$$
(13)

Рассматривается задача об устойчивости шарнирно-опертой по контуру пластинки, сжатой в своей плоскости по направлению x и у давлениями p и cp соответственно.

Ограничиваясь случаем линейного упрочнения материала (1), т. е.

$$\sigma_i = E[(1-\lambda)l_i + \lambda l_s]; \quad \lambda = 1 - \frac{1}{E} \frac{d\sigma_i}{dl_i} = \text{const}, \quad (14)$$

где E—модуль упругости (Юнга), l_s —предел упругих деформаций материала, и полагая $\sigma_x = -p$, $\sigma_y = -cp$, $\tau_{xy} = 0$, с использованием (1), (2) и (14), получаем

$$\sigma_s = \chi p_s; \quad l_i = \frac{\chi p - \lambda p_s}{E(1 - \lambda)}; \quad \chi = \sqrt{1 - c + c^2}; \quad p_s = E l_s; \quad (15)$$

Из (4) с учетом (15) для коэффициентов a_{ij} получаем выражения (3)

$$a_{11} = A \frac{4 \chi 3 p - 3 \iota p_{s}}{\chi p - \lambda p_{s}}; \quad a_{12} = A \frac{2 \chi^{3} p - 3 \iota \iota p_{s}}{\chi p - \lambda p_{s}}; \quad a_{22} = A \frac{4 \chi^{3} p - 3 \iota \iota p_{s}}{\chi p - \lambda p_{s}};$$

$$a_{33} = A \frac{\chi^{3} p}{\chi p - \iota p_{s}}; \quad a_{13} = a_{23} = 0; \quad A = \frac{E(1 - \iota)}{3 \chi^{2}}; \quad \frac{l_{i}}{\sigma_{i}} = \frac{1}{3 a_{33}}. \quad (16)$$

Для уравнения (13) с учетом (15) и граничных условий шарнирного опирания пластинки $w(x,0)=w(x,b)=\frac{\partial^2 w(x,0)}{\partial x^2}=\frac{\partial^2 w(x,b)}{\partial y^2}=0;$

$$w(0, y) = w(a, y) = \frac{\partial^2 w(0, y)}{\partial x^2} = \frac{\partial^2 w(a, y)}{\partial x^2} = 0$$
 (17)

решение ищется в виде

$$w(x, y) = B\sin\frac{\pi mx}{a}\sin\frac{\pi ny}{b},$$
 (18)

где m. n—целые числа, определяющие число полуволн искривленной пластинки. Подставляя значения a_{ij} из (16) и решение (18) в уравнение (17) и преобразуя, получим

$$p^2 - D_1 p + D_2 = 0. (19)$$

В квадратном уравнении (19) введены следующие обозначения:

$$D_{1} = \frac{Ah^{2}\gamma^{2}\alpha^{2}}{3\beta} + \frac{h\rho_{s}}{\gamma} + \frac{k}{h\beta}; \quad D_{2} = \frac{Ah^{2}h\rho_{s}\beta}{4\gamma} + \frac{kh\rho_{s}}{\gamma h\beta},$$

$$\alpha = \left(\frac{\pi m}{a}\right)^{2} + \left(\frac{\pi n}{b}\right)^{2}; \quad \beta = \left(\frac{\pi m}{a}\right)^{2} + c\left(\frac{\pi n}{b}\right)^{2}$$

$$(20)$$

Полагая в (20) c=0; $\chi=1$ и переходя к пределу при $b-\infty$, получаем выражения коэффициентов D_1 и D_2 для шарнирно-опертой бесконечной полосы, сжатой давлением

$$D_{1} = \frac{Ah^{2}\pi^{2}m^{2}}{3a^{2}} + hp_{s} + \frac{ka^{2}}{h\pi^{2}m^{2}},$$

$$D_{2} = \frac{Ah^{2}\pi^{2} + p_{s}m^{2}}{4a^{2}} + \frac{khp_{s}a^{2}}{h\pi^{2}m^{2}}.$$

Таким образом, зная значения D_1 и D_2 , по формуле

$$p_{1,2} = \frac{D_1 \pm \sqrt{D_1^2 - 4D_2}}{2} \tag{21}$$

определяем критические значения напряжений $p_{\kappa p}$.

В работе мы принимаем, что

$$\sigma_i/p = p_e = \gamma.p_e > \sigma_s = El_s, \tag{22}$$

т. е. литосферная плита теряет устойчивость за пределами упругости. Для данного случая с учетом (22) и (15) получим

$$p_{\rm KP} > \frac{\sigma_s}{\chi} > \frac{\lambda p_s}{\chi}$$
 (23)

Расчеты показали, что только для большого корня

$$p_1 = \frac{D_1 + \sqrt{D_1^2 - 4D_2}}{2}$$

удовлетворяется условие (23), поэтому критические значения берем

равными $p_{\kappa p} = p_1$.

В таблице приведены значения критических напряжений для различных значений λ , c, M, b=Ma при m=n=1. Сравнивая полученные результаты с результатами работы (6), приходим к заключению, что литосферная плита может терять устойчивость в упругопластическом состоянии при $\lambda > 0.9$, когда напряжения находятся в допустимых, в смысле прочности, пределах, установленных экспериментальным путем.

Из полученных результатов сделаны следующие выводы:

1. Наличие упругого основания приводит к повышению критических напряжений.

201

 $(h/a=1/6; h=0.7 \cdot 10^5 \text{ M}; E_{\sigma_s}=0.36(6) \cdot 10^3; \sigma_s=2.7 \cdot 10^3 \text{ Kr/cM}^2 \approx 2.7 \cdot 10^8 \text{ Fla})$

С	M=b/a	λ=0.0	λ=0.5	λ=0.9	λ=0.99	
		p/ss	p/os	p/os	p/σ_s	
0,5 1 2 1 2	1 1 2 2 2	55.11 50.22 33.48 31.85 26.148	33,74 25,22 16,85 15,81 13,25	7,18 5,25 3,59 3,47 2,97	1,52 1,17 0,767 1,08 0,76	$kh/\sigma_s=0$
0.5 1 2 1 2	1 1 1 2 2	68.25 51.18 34.11 32,96 27,44	35,03 26,18 17,48 18,11 14,55	8,4 6,21 4,22 4,88 4,14	2,27 1,66 1,43 1,95 1,65	kh/ss=1.2
0.5 1 2 1 2	1 1 1 2 2 2	60,85 45,64 30,42 29,01 24,17	31.01 23,19 15,5 15,02 12,6	7,13 5,25 3,56 3,83 3,3	1.758 1.306 0.878 1.304 1.073	$h = 0.37 \cdot 10^{5} \text{M}$ $E/\sigma_{s} = 0.329 \cdot 10^{3}$ $kh/\sigma_{s} = 0.6$
1 1 2 2 2 3 3 3	3 5 7 3 5 7 1 2	22,22 20,98 20,64 20,2 20,2 20,2 19,15 17,62	11,88 11,31 11,17 10,88 10,97 9,25 9,87 9,38	3,56 3,57 3,55 3,53 3,557 3,42 2,42 2,81	1,64 1,71 1,96 1,505 1,66 1,71 0,805 1,097	$h = 0.7 \cdot 10^{5} \text{M};$ $kh/\sigma_s = 0.93;$ $E/\sigma_s = 0.274 \cdot 10^{3}$

2. С увеличением пластических свойств материала (с возрастом параметра λ) критические напряжения убывают. Когда материал приближается к идеально пластическому (λ стремится к единице), критические напряжения стремятся к напряжениям, соответствующим площадке текучести материала.

Институт геологических наук Академии наук Армянской ССР

1. Ս. ՂԱԶԱՐՑԱՆ

Երկրագնդի լիտոսֆերայի կայունությունը առաձգական սանմանից դուրս

Հոդվածում պլաստիկության դեֆորմացիոն տեսության հիման վրա հետաղոտված է առաձգական հիմք ունեցող սալի (լիտոսֆերայի) կայունությունը, որը բեռնավորված է բոլոր կողմերից։

կուծված են թվային օրինակներ, որտեղ որոշված են կրիտիկական լարումները։

ЛИТЕРАТУРА-ЧРИЧИБИРЕЗИРЪ

¹ А. А. Ильюшин, Пластичность, М.—Л., Гостехиздат, 1948. ² Ю. И. Работнов, С. А. Шестериков, ПММ, т. 21, вып. 3 (1957). ³ Р. М. Киракосян, Изв. АН Арм ССР Механика, т. 27, № 4 (1974). ⁴ А. С. Вольмир, Устойчивость упругих систем, Гос. изд. физ-мат. лит., М., 1963. ⁵ Д. Гёркот, Дж. Шуберт, Геодинамика. Ч. 1, М., Мир, 1985. ⁶ А. Т. Асланян, Междунар. геол. конгресс, XXI сессия. Докл. сов. геологов, 1960, Изд. АН СССР, М., 1960.