LXXXIV

1987

УДК 515.1

МАТЕМАТИКА

9. А. Мирзаханян

Об одном бесконечномерном обобщении теоремы Борсука о неограниченной компоненте

(Представлено чл.-корр. АН Армянской ССР Р. А. Александряном 27/VI 1986)

В статье приводится одно бесконечномерное обобщение теоремы Борсука (1) о неограниченности компоненты точки дополнения $R^n \setminus X$ замкнутого и ограниченного мпожества $X \subset R^n$. Эта классическая теорема несправедлива в бесконечномерном случае в классе всех непрерывных отображений. Вместе с тем оказывается (теорема 3), что теорема Борсука остается верной и в вещественном сепарабельном гильбертовом пространстве H, если только рассматривать так называемые K_0 -отображения, принадлежащие одному допустимому классу K_0 непрерывных отображений подмножеств пространства H.

Определение и ряд основных свойств класса K_0 приведены в (2). Определение. Семейство K_0 -отображений $f_t: X \to Y$, $0 \le t \le 1$, называется K_0 -гомотопией, если определенное формулой $F(t, x) = f_t(x)$ отображение F цилиндра $I \times X$ в Y является K_0 -отображением.

Ниже через S обозначена единичная сфера гильбертова пространства H.

Лемма 1. Пусть A и X—произвольные подмножества пространства H, причем $A \subset X$, и пусть $f: A \to S$ —произвольное K_0 -отображение. Тогда существуют открытое в X подмножество $U \supset A$ и K_0 -отображение $f^*: U \to S$, являющееся продолжением f.

Лемма 2. Пусть $A \subset X \subset H$, причем A замкнуто в X. Пусть, далее, $M=0\times X \cup I\times A$. Тогда всякое K_0 -отображение (в гильбертовом пространстве $H^*=R\times H$) F:M-S может быть продолжено до K_0 -отображения $F:I\times X\to S$.

Теорема 1. Пусть $A \subset X \subset H$, причем A замкнуто в X. Пусть, далее, $f: X \to S$ —произвольное K_0 -отображение, $g_i: A \to S$ частичная K_0 -гомотопия отображения f. Тогда гомотопию g_i можно продолжить до K_0 -гомотопии $f_i: X \to S$ отображения f.

Будем называть K_0 -отображение $f: X \to S$ K_0 -несущественным, если оно K_0 -гомотопно некоторому постоянному отображению множества X в сферу S.

Замечание 1. Отметим, что тождественное отображение id_S : $S \rightarrow S$ является K_0 -существенным (3), хотя оно является несущественным в классе всех непрерывных отображений.

Следствие 1. Пусть $A = X \subset H$, причем A замкнуто в X.

Тогда любое Ko-несущественное отображение f: A → S можно продолжить до Ko-несущественного отображения f*: X-S.

Пусть теперь Х-произвольное замкнутое и ограниченное подмножество пространства H и пусть $G = H \setminus X$, Для каждой точки $x_0 \in G$ определим отображение $p_{x_0}: X \to S$, положив

$$p_{x_0}(x) = \frac{x - x_0}{\|x - x_0\|}$$

Так как отображение p_{x_0} представимо в виде композиции двух K_0 -отображений, то оно также будет K_0 -отображением.

Теорема 2. Пусть Х-замкнутое и ограниченное подмножество H, $a G = H \setminus X$. Тогда точки x_0 и x_1 множества G принадлежат одной и той же компоненте множества С в том и толь. ка том случае, когда отображения $p_{x_0}, p_{x_1}: X \rightarrow S$ K_0 -гомотопны

Следствие 2. Если замкнутое и ограниченное подмножество Х пространства Н обладает тем свойством, что всякое K_0 -отображение $f: X \to S$ является K_0 -несущественным, то множество Х не разбивает пространство Н, т. е. Н\Х связно.

Теорема 3. Пусть Х-замкнутое и ограниченное подмножество пространства H и $G=H\setminus X$. Точка $x_0\in G$ принадлежит неограниченной компоненте множества G в том и только том случае, когда определенное формулой $p_{x_0}(x) = \frac{x - x_0}{\|x - x_0\|}$ отображение

 $p_{x_0}: X \rightarrow S K_0$ -несущественно.

Следствие 3. Пусть S*-единичная сфера гильбертова пространства $H^* = R \times H$ и пусть $X \subset S^* - замкнутое подмножество.$ для которого всякое Ko-отображение множества X в сферу S является K_0 -несущественным. Тогда X не разбивает сферу S^* .

Замечание 2. Отметим, что не только утверждение теоремы 3 (как уже отмечалось выше), но и утверждение теоремы 2 не имеют места в пространстве Н в классе всех непрерывных отображений. В самом деле, в этом классе сфера S стягиваема по себе в точку, и потому любое непрерывное отображение множества х в S несущественно, в частности, отображение $p_{x_0}: X$ — S несущественно для любой точки $x_0 \in H \setminus X$. Далее, если X = S и $x_0 = 0$, то $p_{x_0} = idS$ и p_{x_0} несущественно, хотя точка О принадлежит ограниченной компоненте множества $H \setminus S$.

Ереванский государственный университет

է. Ա. ՄԻՐՁԱԽԱՆՅԱՆ

Անսահմանափակ կոմպոնենտի վեբաբերյալ Բոբսուկի թեոբեմի մի անվերջ չափանի ընդհանրացման մասին

Էվկլիդյան տարածության փակ և սահմանափակ X բազմության $R^n\setminus X$ լրացման կետի կոմպոնենտի անսաշմանափակության մասին Բորսուկի կլասիկ իեորեմը դաղարում է ճիշտ լինկուց չիլբերտյան տարածությունում։
113

Սակայն պարզվում է, որ այդ Թեորեմը մնում է ճիշտ իրական սեպարաբել հիլբերտյան են տարածության համար, եթե միայն դիտարկվեն Η տարածության ենթաբազմությունների անընդհատ արտապատկերումների մի թույլատրելի դասին պատկանող արտապատկերումները։

ЛИТЕРАТУРА — ЭРЦЧЦЪЯ БРЗЯБЪ

И. Стинрод. С Эйленберг, Основания алгебраической топологии, Изд-во физ.-мат. лит., М., 1958. - В. Г. Болтянский, ДАН АрмССР, 51, № 3 (1970). В Э. А. Мир-заханян, ДАН АрмССР, 79, № 1 (1984).