LXXXIV 1987

1

УДК 517.948.35

MATEMATUKA

В. А. Штраус

О дефинизируемом аналоге проблемы моментов Хаусдорфа

(Представлено чл.-корр. АН Армянской ССР Р. А. Александряном 27/XI 1985)

Настоящая заметка посвящена интегральному (точнее—интегрополиномиальному) представлению вещественной последовательности $\{c_q\}_0^\infty$, которая может быть преобразована с помощью разностного выражения к позитивной последовательности $(^3)$ и, кроме того, имеет определенное ограничение на рост при $q - \infty$ (точные определения см. ниже). Вопрос об интегральном представлении такой последовательности и назван здесь дефинизируемым аналогом проблемы моментов Хаусдорфа. Сходные проблемы уже рассматривались в целом ряде работ (см. обзор $(^2)$, а также более поздние работы $(^{3-5})$), однако содержащиеся в настоящем сообщении результаты отличаются от известных как классом изучаемых последовательностей, так и некоторыми особенностями их представления. По поводу классической проблемы моментов Хаусдорфа см. $(^1)$.

Определение. Вещественная последовательность $\{c_q\}_0^n$ называется (строго) дефинизируемой (деф.), если найдутся такие числа $\gamma_0, \gamma_1, \ldots, \gamma_n$, что последовательность $\{c_q\}_0^n$: $c_q = \sum_{p=0}^n \gamma_p c_{p+q}$ будет позитивной.

Пусть $\{\alpha_i\}_1^*$ —некоторое конечное множество точек отрезка $\Delta = [-1;1]$. Будем говорить, что заданная на множестве $\Delta \setminus \{\alpha_i\}_1^*$ функция $\rho(t)$ кусочно-монотонна на нем, если это множество можно разбить на конечное число промежутков, на каждом из которых она монотонна и, кроме того, для любого $x \in (-1;1) \setminus \{\alpha_i\}_1^*$ существуют конечные односторонние пределы $\rho(x-0)$ и $\rho(x+0)$; при этом для определенности будем считать, что $\rho(x) = \frac{1}{2} \left(\rho(x-0) + \rho(x+0)\right)$. Если $x = \pm 1 \in \{\alpha_i\}_1^*$, то в этой точке также существуют соответствующие односторонние пределы. Точку $x \in \Delta \setminus \{\alpha_i\}_1^*$ назовем точкой изменения для $\rho(t)$, если в любой окрестности этой точки $\rho(t) \not\equiv$ const.

Теорема 1. Пусть деф. последовательность $\{c_q\}_0^\infty$ такова, что при некотором $\varepsilon > 0$

$$c_q=0(q^e), q\to\infty.$$
 (1)

Тогда найдутся такие числа $\{\xi_j\}_1^\mu$, $\xi_j \neq \bar{\xi}_j$, $|\xi_j| \leq 1$, $j = 1, 2, \ldots, \mu$, $\{\alpha_i\}_1^\nu$, $\alpha_i = \alpha_i$, $|\alpha_i| \leq 1$, $i = 1, 2, \ldots, \nu$; натуральные числа $\{m_j\}_1^\nu$, $\{n_i\}_1^\nu$ и опре-

деленная на $[-1;1] \setminus \{\alpha_i\}_i^*$ кусочно-монотонная функция $\rho(t)$, число точек изменения которой бесконечно, что

$$c_{q} = \sum_{k=0}^{M} a_{k}^{(q)} c_{k} + \int_{-1}^{1} (t^{q} - P_{q}(t)) d\rho(t), \qquad (2)$$

где $M = -1 + \sum_{j=1}^{\mu} m_j + \sum_{i=1}^{\nu} n_i$, $P_q(z) = \sum_{k=0}^{M} a_k^{(q)} z^k - интерполяционный$

многочлен для z^q с узлами интерполяции $\{\xi_i\}_i^*$ и $\{\alpha_i\}_i^*$ кратности $\{m_i\}_i^*$ и $\{n_i\}_i^*$ соответственно. Интеграл в (2) понимается в несобственном смысле с особыми точками $\{\alpha_i\}_i^*$. Обратно, если последовательность $\{c_q\}_0^*$ допускает представление (2), то она дефинизируема и удовлетворяет условию (1).

Наметим доказательство. Из условия (1) следует, что на просттранстве \$ финитных последовательностей вида $=\{-q\}_0^\infty$ можно определить скалярное произведение $(\overline{q},\overline{q})=\sum_{q=0}^\infty (q+1)^{q+1}\overline{q}\overline{q}_q$ и эрмитово-

билинейную форму $[\zeta, \bar{\eta}] = \sum_{p,q=0}^\infty \zeta_p \bar{\eta}_q c_{p+q}$ так, что оператор $A: A\zeta = \{0, 1\}$

 $\{-1, -2, \ldots\}$ является непрерывным вместе с формой $[\cdot, \cdot]$ по отношению к введенной гильбертовой норме, имеет спектральный радиус, равный единице, симметричен относительно формы $[\cdot, \cdot]$ и дефини-

зируем (2,6) относительно нее многочленом $Q(z) = \sum_{k=0}^{n} \gamma_k z^k$. Далее, ис-

пользуя некоторые результаты M. Γ . Крейна (7), можно ввести на 8 новое скалярное произведение так, что пространство 9 , получающееся из 6 после пополнения его по новот норме и, возможно, факторизации полученного пространства по его изотропной относительно $[\cdot,\cdot]$ части, будет J-пространством, а определенный на 9 оператор A, индуцированный оператором A, —непрерывным оператором C тем же спектральным радиусом. Поскольку A—это дефинизируемый самосопряженный оператор, то у него существует C-ортогональная спектральная функция C конечным множеством критических точек (C0), сосредоточенных C0 тому же в замкнутом единичном круге.

Далее, как следует из некоторых результатов П. Йонаса (8), если f(z)—функция, регулярная в некоторой окрестности спектра оператора A, $\{\xi_j\}_1^n$ —его невещественный спектр, $\{\alpha_i\}_1^r$ —критические точки спектральной функции E_λ , то можно подобрать системы натуральных чисел $\{m_i\}_1^n$ и $\{n_i\}_1^r$ так, что

$$f(\tilde{A}) = P_f(\tilde{A}) + \int_{-1}^{1} (f(h) - P_f(h)) dE_h,$$
 (3)

где $P_i(z)$ —интерполяционный многочлен для f(z) с узлами интерполяции $\{\xi_j\}_1^n$ и $\{\alpha_i\}_1^n$, причем кратность узлов ξ_j и α_i равна m_j и n_i соответственно (выбор m_j и n_i не зависит от f). Из представления (3) непосредственно следует представление (2), если $\varrho(t)=[E_ix,x]$, x—

10

элемент из \mathfrak{Q} , соответствующий последовательности $\{1;0;0;\ldots\}$ из \mathfrak{S} . Тем самым доказательство прямого утверждения теоремы завершено. Справедливость обратного утверждения вытекает непосредственно из вида представления (2).

Рассмотрим теперь связанную с последовательностью c_0 , удовлетворяющей условию (1), регулярную функцию F(z) определенную в области |z| > 1 по формуле $F(z) = \frac{c_0}{z} + \frac{c_1}{z^2} + \dots$ а затем регулярно продолженную в область $|z| \le 1$.

Теорема 2. Последовательность $\{c_i\}$ допускает представление (2) в том и только том случае, когда F(z) представима в виде

$$F(z) = \frac{1}{Q(z)} \left\{ -\sum_{q=0}^{M} c_q \sum_{p=q}^{M} b_{p+1} z^{p-q} + \int_{-1}^{1} \frac{Q(t)}{t-z} d\rho(t) \right\}, \tag{4}$$

где $Q(z) = \sum_{q=0}^{M+1} b_q z^q = \prod_{j=1}^{\mu} \prod_{i=1}^{\nu} (z-\xi_j)^m j(z-\alpha_i)^n i$, остальные элементы те же, что и в (2).

Остановимся теперь на вопросе о единственности элементов представления (2). Отметим, прежде всего, что функция o(t) определяется с точностью до кусочно-постоянного слагаемого, скачки которого сосредоточены в точках из {аі}і. Что касается узлов интерполяционого многочлена $P_q(z)$, то существует единственная минимальная по M (т. е. с учетом кратности) их совокупность, при которой еще возможно представление (2). Любая другая совокупность узлов интерполяции, связанная с представлением (2), является расширением указанной минимальной совокупности. Представление (2) с минимальным множеством узлов интерполяции будем называть неприводимым. Элементы неприводимого представления однозначно (с учетом сказанного выше относительно $\rho(t)$) восстанавливаются по поведению функции F(z) в окрестности ее особых точек. В частности, $\{\xi_i\}_{i=1}^n$ —это система невещественных полюсов функции F(z), а $\{m_i\}_{i=1}^n$ —соответствующая совокупность их порядков. Далее, пусть Г(т, v)-прямоугольный контур, симметричный относительно вещественной оси R, ограничивающий замкнутую область, не содержащую точек из {\$;}, и пересекающий R в точках ти и. Тогда с точностью до кусочно-постоянного слагаемого

$$\rho(t) = -\frac{1}{2\pi i} \int_{-(1+\delta)}^{t} F(z)dz, \ \delta > 0, \tag{5}$$

где интеграл понимается в смысле главного значения с особыми точками ($-(1+\delta)$, 0) и (t,0). Наконец, система $\{\alpha_i\}_i^*$ состоит из тех точек из [-1;1], для которых выполняется одно из условий: 1) функция $\rho(t)$ не ограничена в любой окрестности точки α_i ; 2) найдется такое натуральное n, что существует и отличен от нуля предел $\lim_{z\to 0} \int \frac{(z-\alpha_i)^n F(z) dz}{z}$, а кратность узла интерполяции n_i —это наименьшее из натуральных чисел, для которых одновременно выполнены условия:

1) существует
$$\eta > 0$$
: $\left| \int_{\alpha_i - \gamma_i}^{\alpha_i + \eta} (t - \alpha_i)^n d\rho(t) \right| < \infty;$

2)
$$\lim_{n\to +0} \int_{(\alpha_i-\alpha_i+\delta)} (z-\alpha_i)^n F(z) dz = 0,$$

где интегралы трактуются так же, как и в (2) и (5).

В заключение укажем, что аналогично проблеме моментов Хаусдорфа могут быть рассмотрены и дефинизируемая тригонометрическая проблема моментов и ее интегро-полиномиальное представление, по форме близкое к (2).

Челябинский политехнический инстигут им. Ленинского комсомола

Վ. Ա. ՇՏՐԱՈՒՍ

Հաուսդուֆի մոմենտնեւի պրոբլեմի դեֆինիզացվող անալոգի մասին

Աշխատանքում ապացուցվում է իրական Թվերի հաջորդականության ինտեղոա-բազմանդամային ներկայացման վերաբերյալ Թեորեմ, երբ գոյու-Ոյուն ունի որոշակի ձևափոխություն, որն այդ հաջորդականությունը դարձնում է դրական որոշյալ հաջորդականություն։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

1 Н. И. Ахиезер, Классическая проблема моментов и некоторые вопросы анализа, связанные с нею, М., физматгиз, 1962. ² Т. Я. Азизов, И. С. Исхвидов, в сб.: Итоги науки и техники. Математический анализ, т. 17 (1979). ³ М. G. Krein, H Langer, Wiss. Beitr. M.—Luther-Univ. Halle-Wittenberg, № 14 (1979). ⁴ М. G. Krein, H. Langer, Beitr. Anal., № 15 (1981). ⁵ И. С. Исхвидов, Укр. мат. журн., т. 35, № 6 (1984). ⁶ H. Langer, Lect. Notes Math., 948 (1982). ⁷ М. Г. Крейн, Журн. Ин-та математики АН УССР, № 9 (1947). ⁸ P. Jonas, Beitr. Anal., № 16 (1981).