LXXXIII

1986

УДК 519.22

МАТЕМАТИКА

М. С. Гиновян

Об оценивании функционалов от спектральной плотности, имеющей нули

(Представлено чл.-корр. АН Армянской ССР Р. В. Амбарцумяном 22/Х 1985)

1. Задача об асимптотически эффективном непараметрическом оценивании функционалов от спектральной плотности гауссовской стационарной последовательности рассматривалась в работе И. А. Ибрагимова и Р. З. Хасьминского (1). В этой работе найдены нижние границы для точности непараметрических оценок, а также построены асимптотически эффективные непараметрические оценки для линейных и некоторых нелинейных, но достаточно гладких функционалов от спектральной плотности.

Однако в работе (1) все основные результаты получены в случае, когда спектральная плотность равномерно отделена от нуля.

Цель настоящей заметки-сообщить о некоторых обобщениях результатов работы (1) на случай, когда спектральная плотность имеет нули.

2. Пусть x_t , $t=0, \pm 1, \ldots$ -гауссовская стационарная последовательность со средним нуль $(Ex_l = 0)$ и спектральной плотностью (с. π .) $f(\lambda)$, $\lambda \in [-\pi, \pi]$.

Предположим, что с. п. $f(\lambda)$ неизвестна, но известно, что она принядлежит множеству Г спектральных плотностей, удовлетворяющему следующим условиям;

 C_1 Равномерно по $f \in F$ $\sup \frac{1}{|f|^2} \int f(\lambda) d\lambda \int f^{-1}(\lambda) d\lambda < \infty$, где \sup

берется по отрезкам $/ \subset [-\pi, \pi]$, |I| - длина отрезка I. C_{\bullet} . Равномерно по $f \in F \sum_{|k| > n} |a_k|^2 = o(n^{-1/2})$ при $n \to \infty$; C_{\bullet} . Равномерно по $f \in F \sum_{|k| > n} |c_k|^2 = o(n^{-1/2})$ при $n \to \infty$, где $\{a_k\}$ и $\{c_k\}$ —коэффициенты Фурье функций $\ln f(\lambda)$ и $f(\lambda)$ соответственно.

Пусть $\varphi(\cdot)$ известный функционал, определенный на пространстве $L^{2}[-\pi,\pi]$. Мы хотим оценить значение функционала φ в точке f по n последовательным наблюдениям x_1, \ldots, x_n над последовательностью x_t .

Предположим, что функционал ф дифференцируем в смысле Гато с производной grad $\gamma(f)$, удовлетворяющей следующим условиям:

 B_1 . Равномерно по $f \in F$ $\|f \operatorname{grad} \varphi(f)\| < \infty$, где $\|\cdot\|$ — норма в пространстве L2.

 $B_{\mathbf{p}}$. Равномерно по $f \in F \sum_{|k| > n} |b_k|^2 = o(n^{-1/2})$ при $n \to \infty$, где $\{b_k\}$ —

коэффициенты Фурье функции $grad\varphi(f)(\lambda)$.

Обозначим через Φ_n класс всех оценок функционала $\varphi(f)$, построенных по наблюдениям x_1, \ldots, x_n , и пусть W—это класс всех симметричных, неубывающих функций потерь, таких, что w(0) = 0, $w \in W$.

- Следующая теорема является обобщением теоремы 1.1 работы (1) и дает минимаксную нижнюю границу для риска всевозможных

оценок функционала $\varphi(g)$ в некоторой окрестности точки f.

Теорема 1. Пусть множество F и функционал φ удовлетворяют условиям C_1-C_3 , B_1 и B_2 . Тогда для всех $w\in W$

$$\Delta = \lim_{\delta \to 0} \lim_{n \to \infty} \inf_{\theta \to 0} \sup_{\theta \to 0} E_g\{w(\sqrt{n}(\varphi_n - \varphi(g)))\} \geqslant$$

$$\geq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} w(\sqrt{2\pi} \|f \operatorname{grad}\varphi(f)\| u \exp\left\{-\frac{u^2}{2}\right\} du \qquad (1)$$

Доказательство теоремы 1 существенно опирается на ниж еприводимую лемму 1.

Введем в рассмотрение параметрическое семейство спектральных плотностей $f_h(\lambda)$:

$$f_h(\lambda) = f(\lambda)(1 + h\psi(\lambda)), \tag{2}$$

где $\psi(\lambda) \in L^2$, а $h \in \mathbb{R}^1$ такое, что |h| достаточно мала.

Обозначим через $P_{n,h}$ распределение вектора $X = (x_1, ..., x_n)'$.

Лемма 1. Пусть с. п. $f \in F$ и пусть функция $\psi(\lambda)$ из (2) удовлетворяет условию $\sum_{|k|>n} |r_k|^2 = o(n^{-1/2})$ при $n \to \infty$, где $\{r_k\}$ —коэффи-

циенты Фурье функции $r(\lambda) = \frac{\psi(\lambda)}{f(\lambda)}$. Тогда семейство распределений $\{P_{n,h}\}$ при $n-\infty$ удовлетворяет условию локальной асимптотической нормальности в точке h=0 с информацией Фишера $J=\|\psi\|^2$.

3. Теперь рассмотрим линейный функционал T(f):

$$T(f) = \int_{-\pi}^{\pi} f(\lambda)b(\lambda)d\lambda, \tag{3}$$

Естественной оценкой для функционала T(f) является функция \widehat{T}_n :

$$\widehat{T}_n = \int_{-\pi}^{\pi} I_n(\lambda) b(\lambda) d\lambda, \qquad (4)$$

где $I_n(\lambda) = \frac{1}{2\pi n} \left| \sum_{j=1}^n x_j e^{-i\lambda j} \right|^2$ — периодограмма последовательности x_l .

Обозначим через F_1 множество всех спектральных плотностей, удовлетворяющих условию C_3 .

Предположим, что функция b(i) из (3) вещественна и удовлетворяет следующим условиям: равномерно по feF,

 B_{*} . $\sum_{|k|>n} |b_{k}|^{2} = o(n^{-1/2})$ при $n \to \infty$, где $\{b_{k}\}$ —коэффициенты

Фурье функции b(i).

Пусть W класс функций потерь w (W, удовлетворяющих дополнительному условию: при некоторых $c_1>0$ и $c_2>0$ w(u) < $\leq c_1 \exp\{c_1 u\}$.

Следующая теорема обобщает теорему 2.1 работы (1) на рассма-

триваемый здесь случай.

Теорема 2. Пусть с. п. fef, и пусть функция b(i.) удовлетворяет условиям \overline{B}_1 и \overline{B}_2 .

Тогда для всех w (WI равномерно по f и T

$$\lim_{n \to \infty} E_f\{w(\sqrt{n}(\widehat{T}_n - T(f))\} = Ew(\xi), \tag{5}$$

гое -- нормальная случайная величина со средним нуль и диспер-

cueŭ $\sigma^2 = 2\pi \|bf\|^2$.

Замечание 1. Из соотношений (1) и (5) следует, что если с. II. $f(\lambda) \in F$, то оценка \tilde{T}_n является асимптотически эффективной оценкой для линейного функционала T(f) в классе $\Phi_n(T)$.

Доказательство теоремы 2 легко следует из нижеприведеных

лемм.

Лемма 2. В условиях теоремы 2 равномерно по f и T

- 1) $\lim_{n\to\infty} n^{1/2} |E_f(\hat{T}_n) T(f)| = 0;$
- 2) $\lim_{n\to\infty} nE_f(\widehat{T}_n T(f))^2 = 2\pi \|bf\|^2$.

 Jl ем м a 3. B условиях теоремы $\mathsf{2}$ равномерно по f , T и $\mathsf{u} \in \mathsf{R}^\mathsf{1}$ $\lim |P\{\sqrt{n}(T_n-T(f)) < u\} - P(\xi < u)| = 0,$

где — нормальная случайная величина со средним нуль и дисперcueŭ $\sigma^2 = 2\pi \|bf\|^2$.

Институт математики Академия наук Армянской ССР

Մ. Ս. ԳԻՆՈՎՑԱՆ

Զրոներ ունեցող սպեկաբալ խաությունից ֆունկցիոնայների գնահատման մասին

Them $p x_l$, t=0, ± 1 , ... apreliminal of high fund to $f(\lambda)$, $\lambda \in [-\pi, \pi]$, unable արալ խտությամբ գաուսլան ստացիոնար հաջորդականություն է, X_n= = (x1, ..., xn)-ը n-չափանի վերցվածը է ալդ հաջորդականությունից և դիցուք $\varphi(f)$ -ն ֆունկցիոնալ է որոշված L^2 տարաձու θ լան վրա։ Հոդվածում դիտարկվում է p(f) ֆունկցիոնայի ոչպարամետրական դնահատման իւնդիրը X_n վերցված քի միջոցով, ալն դևպի համար, ևրբ ƒ(λ) ֆունկցիան ունի գրուներ։ Սաացված է բանաձև ոչպարամետրական դնահատականի ճչգրտունվան ստորին եզրի համար։ Բերված են ասիմպտոտիկ էֆեկտիվ դնահատականներ ալն դեպքի համար, երբ φ(f) ֆունկցիոնալը դժալին է։

ЛИТЕРАТУРА — ЧРИЧИВПЪРВЯВЬ

² R. Z. Has'minskii, I. A. Ibragimov, Probability Theory and Rel. Fields. v. 73, № 3 (1986). ² И. А. Ибрагимов, Р. З. Хасьминский, Асимптотическая теория оценивания, Наука, М., 1979 ³ Ю. А. Кошевник, Б. Я. Левит, Теория верояти. в ее примен., т. 21, вып. 4 (1976) ⁴ М. С. Гиновян, Зап. научи. семинаров ЛОМИ, т. 136 (1984).