I.XXXII

1986

МАТЕМАТИКА

УДК 513.8

М. И. Караханяч

Почти-периодичность в спектральном анализе нормальных операторов

(Представлено чл.-корр. АН Армянской ССР Р. А. Александряном 8/VI 1985)

Пусть B(X)—банахова алгебра всех ограниченных линейных операторов, действующих на комплексном банаховом пространстве X. Если для оператора $S \in B(X)$ имеет место равенство $\|e^{itS}\| = 1$ для всех $t \in \mathbb{R}$, то оператор S называют эрмитовым (см. $(^{1,2})$). Оператор $A \in B(X)$ назовем нормальным, если A = H + iK, где H, $K \in B(X)$ —коммутирующие эрмитовы операторы. Нетрудно видеть, что для нормального оператора A представление в виде H + iK единственно.

Пусть S—компактный эрмитов оператор, действующий в слабо полном банаховом пространстве X, тогда e^{ttS} —изометрическое представление группы R в пространстве X. Как показал Θ . И. Любич (³) (см. также (⁴)), для полноты системы собственных векторов компактного эрмитова оператора S в слабо полном банаховом пространстве X (что эквивалентно полноте системы собственных векторов представления e^{ttS}) необходимо и достаточно, чтобы для каждого $x \in X$ и $\varphi \in X^*$ функция $\varphi(e^{ttS}x)$ была боровской почти-периодической функцией на R.

В данной работе с использованием методики работ (3.4) будет получено обобщение этих результатов для нормальных операторов как в ограниченном, так и неограниченном случаях.

Пусть G—локально компактная, G—компактная абелева группа. Обозначим через $C_{AP}(G)$ банахову алгебру равномерных почти-периодических функций на группе G, наделенную sup-нормой. Если алгебру $C_{AP}(G)$ пополнить по предгильбертовой структуре, определяемой скалярным произведением $\langle f, \psi \rangle_b = M[f\overline{\psi}]$, где $M[f\overline{\psi}] = \lim_{n \to \infty} \frac{1}{\lambda(ff_n)} \int_{H_n} f\overline{\psi} d\lambda$ (см. (5), с. 323), то получится гильбертово прос-

транство почти-периодических функций Безиковича на группе G, которое обозначают через $B^{\mathfrak{s}}(G)$.

Отметим, что унитарные характеры \widehat{G} образуют в пространстве $B^2(G)$ ортонормированный базис; нетрудно видеть, что естественный изоморфизм $C_{AP}(G) \simeq C[b(G)]$, где b(G)—боровский компакт группы G, продолжается до изометрического изоморфизма $B^2(G) \simeq L^2[b(G)]$, где $L^2[b(G)]$ строится по нормированной мере Хаара d_{μ} на группе b(G).

Пусть $T:G-\mathrm{Aut}(X)$ --изометрическое представление группы G в пространстве X, т. е. $\|T(g)\|=1$ для каждого $g\in G$. Отметим, как это принято в теории представлений топологических групп, что все рассматриваемые здесь представления предполагаются сильно непрерывными. Вектор $x\in X$ ($x\neq 0$) будем называть собственным вектором представления T, если существует характер $\chi\in G$ такой, что $T(g)x==\chi(g)x$ для каждого элемента $g\in G$.

Теорема 1. Пусть X—слабо полное банахово пространство, G—локально компактная, z—компактная абелева группа и T—изометрическое представление группы G в пространстве X. Тогда для того чтобы система собственных векторов представления T была полна в пространстве X, необходимо и достаточно, чтобы для каждого $x \in X$ и $z \in X^*$ функция $z \in T(g)$ $x \in T(g)$.

Доказательство. Необходимость. Пусть по $\varepsilon > 0$, $\|x - \sum_{k=1}^m x_k\| < \varepsilon$, где $T(g)x_k = \gamma_k(g)x_k$ для всех $g \in G$ и $k = 1, \ldots, m$, тогда $\Big| \varphi(T(g)x) - \sum_{k=1}^m \gamma(x_k) \chi_k(g) \Big| < \varepsilon \|\varphi\|$, откуда и следует, что функция $\varphi(T(g)x) \in C_{AP}(G)$.

Достаточность. Пусть для каждого элемента $x \in X$ и $\varphi \in X^*$ функция $\varphi(T(g)x) \in C_{AP}(G)$. Сопоставим функции $\varphi(T(g)x)$ ее ряд Фурье в пространстве $B^2(G)$, т. е. $\varphi(T(g)x) \approx \sum_{x \in G} c_x \cdot \chi(g)$, где $c_x = \lim_{n \to \infty} \frac{1}{\lambda(H_n)} \times \frac{1}{\lambda(H_n)}$

$$\times \int_{H_n} \varphi(T(g)x) \overline{\gamma(g)} dh(g).$$

В силу слабой полноты пространства X существует слабый предел $P_{\kappa}x = \lim_{n \to \infty} \frac{1}{\lambda(H_n)} \int_{\mathcal{U}} T(g)x \overline{\chi(g)} \, d\iota(g).$

Покажем, что
$$i$$
) $P_{z_{\alpha}} \cdot P_{z_{\beta}} = \delta_{\alpha,\beta} P_{z_{\alpha}}$; ii) $T \cdot P_{z} x = \gamma P_{z} x$.

Так как T—изометрическое представление группы G, то $\|P_x\| \le 1$. Проверим свойство ℓ). Пусть $x \in X$, тогда

$$P_{x_{\alpha}} \cdot P_{x_{\beta}} x = \lim_{n \to \infty} \frac{1}{\lambda(H_n)} \int_{H_n} T(g) [P_{x_{\beta}} x] \overline{\gamma_{\alpha}(g)} d\lambda(g) =$$

$$= \lim_{n \to \infty} \frac{1}{\lambda(H_n)} \int_{H_n} T(g) x \overline{\gamma_{\alpha}(g)} d\lambda(g) \cdot \lim_{n \to \infty} \frac{1}{\lambda(H_n)} \int_{H_n} \gamma_{\alpha}(h) \overline{\gamma_{\beta}(h)} d\lambda(h) =$$

$$= \langle \chi_{\alpha}, \chi_{\beta} \rangle_b \cdot P_{x_{\alpha}} x = \delta_{\alpha,\beta} P_{x_{\alpha}} x.$$

Покажем выполнение свойства ii). Для g(G) имеем

$$T(g)P_x x = T(g)\lim_{n\to\infty} \frac{1}{\lambda(H_n)} \int_{H_n} T(h)x \overline{\chi(h)} d\lambda(h) =$$

$$=\lim_{n\to\infty}\frac{1}{\lambda(H_n)}\int_{H_n}T(h)x\overline{\chi(h-g)}d\lambda(h)=\chi(g)P_xx.$$

Таким образом, вектор $x(\chi) = P_x x$ является собственным вектором представления T, ибо $Tx(\chi) = TP_x x = \chi P_x x = \chi x(\chi)$, где $\chi \in \widehat{G}$. Пусть теперь $\varphi \in X^*$ —такой функционал, что $\varphi(x(\chi)) = 0$, тогда $c_x = \varphi(P_x x) = \varphi(x(\chi)) = 0$. Так как унитарные характеры $\chi \in \widehat{G}$ образуют ортонормированный базис в $B^2(G)$, то $\varphi(T(g)x) = 0$, откуда $\varphi(x) = 0$ и значит $\varphi = 0$.

Теорема 1 доказана.

Отметим, что для изометрического представления локально компактной группы в рефлексивном пространстве аналогичный результат получен Ю. И. Любичем (см. (в)) исходя из других соображений.

Если использовать вышеуказанную теорему 1 применительно к конечному семейству $\{A_1, \ldots, A_N\}$ коммутирующих нормальных операторов из B(X), то получается следующая

Теорема 2. Пусть X—слабо полное банахово пространство $u \{A_1, \ldots, A_N\}$ —конечное семейство коммутирующих, нормальных операторов из B(X). Тогда для того чтобы система собственных векторов семейства $\{A_1, \ldots, A_N\}$ была полна в пространстве X, необходимо и достаточно, чтобы для каждого $x \in X$ и $\varphi \in X^+$ функция $\varphi[e^{i(\langle \vec{s}, \vec{k} \rangle) - \langle \vec{i}, \vec{H} \rangle} x] \in C_{AP}(\mathbb{R}^{2N})$, где $\langle \vec{s}, \vec{k} \rangle = \sum_{p=1}^{N} s_p K_p$, $\langle \vec{t}, \vec{H} \rangle = N$

 $\sum_{p=1}^{N} t_{p} H_{p}; \ H_{p} = \frac{A_{p} + A_{p}^{+}}{2}, \ K_{p} = \frac{A_{p} - A_{p}^{+}}{2i}; \ p = 1, \dots, \ N.$

В случае, когда при каждом $p=1,\ldots,N$, $A_p=A_p^+$, получается эрмитов вариант теоремы 2.

Рассмотрим случай неограниченных операторов. Пусть A—линейный оператор, заданный на линейном многообразии $D(A) \subset X$. Оператор A назовем пормально-корректным (н-корректным) (см. (4)), если:

1) A—замкнутый оператор и существует замкнутый линейный оператор A^+ такой, что $D = D(A) \cap D(A^+)$ плотно в X и $AA^+x = A^+Ax$ для каждого $x \in D$;

2) задача
$$\begin{cases} s \frac{\partial x(s, t)}{\partial s} + t \frac{\partial x(s, t)}{\partial t} = t(sK - tH)x(s, t) \\ x(0, 0) = x_0, -\infty < s, t < \infty \end{cases}$$

при любом $x_0 \in D$ имеет единственное решение x(s,t) в классе сильно дифференцируемых вектор-функций, где $H = \frac{A + A^+}{2}$, $K = \frac{A - A^+}{2t}$;

3) операторы V(s,t), определяемые соотношением $x(s,t)==V(s,t)x_0$, удовлегворяют условию $\|V(s,t)\|=1$ при каждом $(s,t)\in\mathbb{R}^2$. Нетрудно видеть, что если оператор A н-корректен, то семейство операторов $\{V(s,t)_{(s,t)\in\mathbb{R}^2}-\text{сильно непрерывная двухпараметрическая группа, для которой инфинетизимальными производящими операторами являются <math>iK$ и -iH.

Как и выше, из теоремы 1 выводится следующая

Теорема 3. Для того чтобы система собственных векторов н-корректного оператора A была полна в слабо полном банаховом пространстве X, необходимо и достаточно, чтобы для каждого $x(X \cup \varphi \in X^*)$ функция $\varphi[V(s,t)x] \in C_{AP}(\mathbb{R}^2)$.

Отметим, что аналогичную теорему можно получить для конечного семейства коммутирующих н-корректных операторов.

Ереванский государственный университет

Մ. Ի. ԿԱՐԱԽԱՆՑԱՆ

Համաբյա-սլաբրերականությունը նորմալ օպերատորների սպեկտրալ անալիզում

Դիցուք G—լոկալ կոմպակտ, σ-կոմպակտ արելլան խումբ է և C_{AP}(G) բոլոր Տավասարաչափ համարլա-պարբերական ֆունկցիաների բանախյան հանրահաշիվն է, G-խմբի վրա որոշված, sup-նորմալի նկատմամբ։ Այդ դեպքում տեղի ունի հետևլալ արդլունքը։

Թեորեմ։ Դիցուք *X-*թույլ լրիվ Բանախի տարածություն ե, *G*-լոկալ կոմպակտ, օ-կոմպակտ արելյան խումբ ե և *T*-ն այդ խմբի իզոմետրիկ

ներկայացումն ե X տարածությունում։

Այդ դեպքում, որպեսզի T ներկայացման սեփական վեկտորների ընտանիքը կազմի լրիվ սիստեմ X տարածությունում, անհրաժեշտ ե և բավարար, որ յուրաբանչյուր $x \in X$ և $\varphi \in X^*$, $\varphi(T(g)x) \in C_{AP}(G)$.

Ալս Թևորեմը Թուլլ է տալիս ստանալ Ցու. Ի. Լյուբիչի [3], [4] արդլուն քների ընդ հանրացում նևրը։ Մասնավորապես $\{A_1, \ldots, A_N\}$ նորմալ. ոկմ պակտ, միմ լանց հետ տեղափոխելի օպերատորների համակարգի համար ստացվում է սեփական վեկտորների լրիվության չափանիչ։

ЛИТЕРАТУРА — ԳРԱԿԱՆՈՒԹՑՈՒՆ

¹ В. Э. Кациельсон, Сб. мат. псследований, Кышинев, т. 5, № 3 (1970). ² Е. А. Горин, Вестн. Харьковского ун-та, № 205, прикл математика и механика, вып. 45 (1980). ³ Ю. И. Любич, ДАН СССР, т. 132, № 3 (1960). ⁴ Ю. И. Любич, УМН, т. 18, вып. I (109) (1963). ⁵ Э. Хыюитт, К. Росс, Абстрактный гармонический анализ, т. I, Наука, М., 1975. ⁶ Ю. И. Любич, Введение в теорию банаховых представлений групп, Вища школа, Харьков, 1985.