LXXXIII 1986

УДК 519.8

МАТЕМАТИКА

А. Д. Туниев, А. Н. Серебровский

Расширенный метод обратной матрицы

(Представлено чл.-корр. АН Армянской ССР Р. Р. Варшамовым 3/VI 1985)

Впервые метод обратной матрицы был применен Л. В. Канторовичем к одной из частных задач линейного программирования (1,2). В дальнейшем этот алгоритм был развит для решения общей задачи линейного программирования (3). Аналогичные результаты были получены в (4).

В (⁵) была поставлена задача пересмотра группы симплексных методов с точки зрения идеи особого правила выбора не одного, а одновременно нескольких элементов—направляющего вектора. Относительно симплекс-метода эта задача рассматривалась в (⁶). Здесь эта задача решается для метода обратной матрицы. Основой метода является понятие частично-обратной матрицы, которая в рассматриваемом смысле единственная (⁶) и является дальнейшим развитием обратной матрицы Мура—Пенроуза.

Приведем основные обозначения из (7). Вектор $x=\{x_{i}\}$, где i пробегает множество N, обозначим x [N]. Вектор x[K], где $K\subset N$, будет обозначать K-й "кусок" вектора x[N]. Компоненту вектора x[N], имеющего индекс i, обозначим x[i]. Символ $a[M,N]=\{a_{ij}\}$ будет обозначать матрицу, индексы строк которой пробегают множество M, а индексы столбцов N. Вектор a[i,N]-i-я строка матрицы. a[M,N], а a[M,j] ее j-й столбец.

1°. Признак оптимальности. Пусть $M=\{1, 2, ..., m\}$, $N=\{1, 2, ..., n\}$ и требуется максимизировать линейную форму

$$c[N|x[N] \tag{1}$$

a[M, N]x[N] = a[M, 0], (2)

$$x[N] \geqslant 0[N]. \tag{3}$$

Зададим разбиение $K = \{K_1, K_2, ..., K_\tau\}$, где $K \subseteq N$, $K_t \cap K_l = \emptyset$ ($i, j = 1, 2, ..., \tau$). Пусть при этом разбиение a[K, M] частично-обратная матрица для a[M, K].

Утверждение. Если вектор $x^0[K, 0] = \tilde{a}[K, M]a[M, 0] \gg 0[K]$ и расширенные оценки $x^0[0, j] = c[K]\tilde{a}[K, M]a[M, j] - c[j] \gg 0$, то $x[N] = \{x^0[K, 0], 0[N \setminus K]\}$ —решение задачи (1)—(3).

 2° . Описание метода. Пусть задача (1)—(3) невырожденная, $x^{0}[K, M] = \tilde{a}[K, M]$, $x^{0}[K, 0] \ge 0[K]$ ($x^{0}[K, M]$ может быть и единичной матрицей).

Первая итерация. 1. Если расширенные оценки $x^0[0, j] \ge 0$, $j \in \mathbb{N}$, то $x[N] = \{x^0[K, 0], 0[N, K]$ —решение задачи.

2. Если, по крайней мере, для одного $j \in \mathbb{N}$ столбец $x^0[K,j] \leqslant$

<0[K] и $x^0[0,j]<0$, то задача (1)—(3) неразрешима.

3. Если план $x^0[K,0]$ содержит нулевые компоненты, то переходим к п. 8 для их исключения.

Пусть $x^0[K,0] > 0[K]$. Выбираем $\overline{K} \subseteq N$ такое, что оценки $x^0[0,j] < 0$, $j \in \overline{K}$. Вычисляем $x^0[K,j] = \widetilde{a}[K,M]a[M,j]$, $j \in \overline{K}$. Далее определяем

$$\theta_{s,} = \frac{x^{0}[s_{1}, 0]}{\|x^{0}[s_{1}, \widetilde{K}_{s,}]\|} = \min_{i} \frac{x^{0}[i, 0]}{\|x^{0}[i, \widetilde{K}_{i}]\|}$$

для тех i, для которых вектор $x^0[i, \widetilde{K}_i]$ содержит все положительные компоненты вектора $x^0[i, \overline{K}]$. Ясно, что для выбранных i $x^0[i, \overline{K}_i] > 0[\widetilde{K}_i]$ и $\widetilde{K}_i \subseteq K$. Полагаем $K = \widetilde{K}_{s_1}$.

5. Обозначим $S_r = \{s_1, s_2, ..., s_r\}$ (r=1, 2, ..., r). На r-ом шаге

определяем г-й (г≥2) особый направляющий вектор*. Пусть:

(a)
$$\theta_{s_r} = \frac{x^{r-1}[s_r, 0]}{\|x^{r-1}[s_r, \widetilde{K}]\|} = \min_{i \geqslant r} \frac{x^{r-1}[i, 0]}{\|x^{r-1}[i, \widetilde{K}]\|}$$
.

для тех i, для которых $||x^{i-1}[i, \tilde{K}]|| \neq 0$;

(6)
$$\sum_{l \in S_{r-1}} x^{r-1}[l, \widetilde{K}] x^{r-1}[l, 0] + \frac{x^{r-1}[s_r, \widetilde{K}] x^{r-1}[s_r, 0]}{\|x^{r-1}[s_r, \widetilde{K}]\|^2} \ge 0[\widetilde{K}];$$

(B)
$$\sum_{j\in\mathbb{R}} x^{r-1}[0,j]x^{r-1}[s_r,j] < 0^{**}.$$

Если один из подпунктов (a)—(в) нарушается, то переходим к п. 7, где полагаем r=r-1.

6. Шаг обобщенного жорданового исключения. Пусть $L = \overline{K} \bigcup M$. Полагаем

$$x'[i, j] = \begin{cases} \frac{x^{r-1}[i, j], & i \in S_{r-1}, j \in L, \\ \frac{x^{r-1}[i, j]}{\|x^{r-1}[i, \overline{K}]\|}, & i = s_r, j \in L, \\ x^{r-1}[i, j] + \alpha_i^{r-1}[s_r, j], & i \in S_r, j \in L, \end{cases}$$

где
$$a_i^{r-1} = z_i^{r-1}(\vec{K}) = -\sum_{j \in \vec{K}} x^{r-1}[i, j] x^r[s_r, j], i \in S_r.$$

7. Определяем новую частично-обратную матрицу $\tilde{u}[N_r, M]$. Пусть $x^r[S_r, K] = \{x^r[i, j]\}$ и $v^r[K, M] = x^r[S_r, K]^r x^r[S_r, M]$. Формируем множество $N_r = K_r \cup K_r' \cup K_r''$, где $K_r' = K \cap K_r$, $K_r = K \setminus S_r$, $K_r' = K \setminus K_r'$, $K_r'' = K_r \setminus K_r'$. Тогда $\tilde{u}[N_r, M] = \{\tilde{u}[i, j]\}$, где

* При r=1, минуя п. 5, переходим к п. 6, где $\widetilde{K} = \widetilde{K}_{S_1}$.

^{**} Подпункты (a), (б) гарантируют неотрицательность полученного плана, а (в)—увеличение значения линейной формы (1).

Отметим, что если $\tilde{u}[i,j]=0$, $i\in J$ и $j\in M$, где $J\subset N_I$, полагаем $N_I=N_I\setminus J$.

Конец первой итерации, переходим к п. 1.

8. Пусть $x^0[i,0]=0$, $i\in S_r$. Выбираем \widetilde{K} такое, что $K\subset K$ и $K\cap S_r=\emptyset$. Далее последовательно выбрав в качестве особых направляющие векторы с индексами $s_1,s_2,...,s_r$, согласно п. 6,7, после r шагов получим частично-обратную матрицу $\widetilde{u}[N_r,M]$. При этом будут исключены r нулевых компонент плана $x^0[K,0]$, а значение линейной формы (1) не изменится. Переходим к п. 4.

Теорема. Пусть элементы $\tilde{u}[N_r,M]$ определены согласно (4). Тогда:

а) матрица $\tilde{u}[N_r, M]$ является частично-обратной для $a[M, N_r]$ и в рассматриваемом смысле (при выбранном K) единственной;

б) вектор $u[N_r, 0] = u[N_r, M]a[M, 0]$ является улучшенным особым планом задачи (1)—(3), при этом значение линейной формы (1) равно $c[N_r]u[N_r, 0] > c[K]x^0[K, 0]$.

Доказательство теоремы проводится по схеме доказательства теоремы 1 из (6). Из этой теоремы следует, что расширенный метод обратной матрицы конечен.

Замечание 1. Если в п. 5 (а) минимум достигается для нескольких индексов, то выбираем наименьший из них.

Замечание 2. С учетом (8) этот метод модифицируется. Суть его заключается в том, что на каждом r-ом шаге итерации можно выбирать не постоянное \bar{K} (зависящее от номера итерации), а \bar{K}_{s_r} , где \bar{K}_{s_r} , при $r \gg 2$, определяется так же, как и при r=1. При этом для $r=1,2,\ldots,r$ п. 5 минуется и преобразуются все элементы $x^{r-1}[i,j]$.

Вызывает интерес задача проф. Н. З. Шора (ИК им. В. М. Глушкова АН УССР), которая состоит в определении конечного набора K_1, K_2, \ldots, K_d , приводящего к быстрому достижению оптимума.

 3° . Численный эксперимент проводился по следующей методике. Отталкиваясь от одного и того же начального опорного плана, методом, изложенным в 2° , задача (1)—(3) решалась n раз, где n—число переменных задачи.

При ее s-ом решении, независимо от номера итерации, число элементов $\overline{K} = \overline{K}^s$ (см. п.4) не превышало n-(s-1) ($s=1,2,\ldots,n$).

Если при s-ом решении на некоторой итерации число оценок для $x_s[0,j]<0$ превышало n-(s-1), то число элементов $\overline{K}=\overline{K}^s$ выбиралось равным n-(s-1), при этом в множество \overline{K}^s входили те индексы j, для которых $x_s[0,j] \leq x_s[0,i]$, $i \in \mathbb{N} \setminus \overline{K}^s$. При s=n это был обычный метод обратной матрицы.

Первые эксперименты па ЕС ЭВМ показали, что при п разовом

решении задачи (1)—(3) в большинстве случаев (95%)² существуют такие $s(s \neq n)$, при которых:

- а) точность полученного результата (время решения задачи) лучше, чем в обычном методе обратной матрицы;
- б) в вырожденных задачах удается обойти вырожденные опорные планы и получить оптимальный план;
 - в) удается получить неопорный особый план.

Задачу (1)—(3) можно решать не n раз, а l раз, где $l = \left[\frac{n}{d}\right]$.

 $d(:\{1, 2, \dots \left\lceil \frac{n}{2} \right]\}$. В этом случае при s-ом решении задачи число элементов $\overline{K} = \overline{K}^s$ не превышает n - (s-1)a $(s=1, 2, \dots, l)$.

На многопроцессорных вычислительных комплексах l разовое решение задачи (1)—(3) можно проводить параллельно (одновременно) на l процессорах. При этом решение задачи можно прервать либо по критерию точности ($\|a[M,0]-a[M,N]x[N]\|$), либо по критерию времени, либо с учетом обоих критериев.

ВЦ Министерства местной промышленности Армянской ССР Институт кибернетики пм. В. М. Глушкова Академии наук Украпиской ССР

Ա. Դ. ԹՈՒՆԻԵՎ, Ա. Ն. ՍԵՐԵԲՐՈՎՍԿԻ

Հակաղաբձ մատրիցայի ընդլայնված մեթոդ

Տվյալ աշխատանքում առաջարկվում է գծային ծրադրավորման խնդրի լուծման մեթոդ, որը հանդիսանում է հակադարձ մատրիցայի հայտնի մեթոդի ընդհանրացված տարբերակը։

Մեթոդի Հանրահաշվական հիմք հանդիսանում է մասնակի-հակադարձ մատլիցայի դաղափարը, որը հանդիսանում է Մուռ—Պենրոուղի հակադարձ մատրիցայի ընդհանրացումը, և ժորդանյան բացառումների ընդհանրացված ոլրոցեդուրան։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ Л. В. Канторович, ДАН СССР, т. 37, № 7—8 (1942). ² Л. В. Канторович, М. К. Гавурин, в ки.: Проблемы повышения эффективности работы транспорта, Изд-во АН СССР, Л., 1949. ³ Л. В. Канторович, В. А. Залгаллер, Расчет рационального раскроя промышленных матерналов, Лениздат, 1951. ⁴ G. В. Dantzig, А. Orden, Р. Wolfe, RAND Report RM—1264. The RAND Corporation, Santa Monica, Calif., 1954 ⁵ А. Д. Туниев, Кибернетика, № 3, 1983. ⁶ А. Д. Туниев, Кибернетика, № 4, 1984. ⁷ И. В. Романовский, Алгоритмы решения эксгремальных задач, Наука, М., 1977. ⁸ Л. Д. Туниев, А. С. Туниев, ДАН Арм. ССР, т. 83, № 1 (1986).

^{*} Нами рассматривались 20 задач различной пло:пости, при этом m=100, n=500; m=200, n=500.