LXXXIII 1986

УДК 612.821.6+615.017.8

ФИЗИОЛОГИЯ

Г. Е. Григорян, А. М. Стольберг, И. А. Джагацпанян

Влияние соединения 3-амино-2-изо-пропил-6,6-диметил-4-оксо-5, 6-дигидро-8Н-пирано [4', 3':4, 5] тиено [2,3-d] пиримидин-4-она (АН-442-132) на лабиринтное обучение белых крыс

(Представлено чл.-корр. АН Армянской ССР О. Г. Баклаваджяном 2/І 1986)

На основании результатов ранее проведенных исследований было показано, что противосудорожный препарат пуфемид в терапевтических дозах угнетает ориентировочно-исследовательскую активность крыс в тесте «открытого поля» (1,2), а также возобновляет и усиливает конкурентные отношения между пищедобывательным и избегательным поведением в лабиринте. И поскольку совместить в данной конфликтной ситуации реализацию двух антиподных (по биологическому знаку) реакций невозможно, то блокируется пищевое поведение за счет выпадения акта возвращения в стартовую камеру (СК). При этом у обученных крыс полностью сохраняются механизмы памяти. Они точно воспроизводят «образ» целевого пути в лабиринте (3).

Важно было выяснить: специфичен ли описанный избирательный эффект для пуфемида или это свойственно также и другим антиконвульсивным препаратам? В этой связи было испытано новое химическое соединение АН-442—132, синтезированное в ИТОХ АН Армянской ССР (4). Кристаллы вещества бело-кремового цвета плохо растворяются в воде. Характерным для данного соединения является выраженное антикоразоловое действие, предотвращающее клонические судороги у мышей в широком диапазоне доз (2,6—64 мг/кг).

Опыты проведены на беспородных крысах (n=15) обоего пола массой 200—300 г. Большинство из них участвовало в опытах с пуфемидом. В качестве теста индивидуального обучения крыс применяли «шестиходовой» и «Т-образный» лабиринты закрытого типа. Животных брали на опыт при суточной пищевой депривации два-три раза в неделю. Методика и программа лабиринтного обучения, а также динамика развития поведения крыс подробно описаны (3). На каждой особи проведено по 5—7 опытов. «Соединение» вводили внутрибрюшинно в виде суспензии с карбоксиметилцеллюлозой 0,6—0,7 мл. В контрольных опытах вместо «соединения» применялся физиологический раствор в том же объеме.

Данные о пороговых противосудорожных дозах соединения АН-442—132 для крыс, к сожалению, отсутствуют. Поэтому об эффектах испытуемого вещества на организм судили по первичным изменениям временных параметров некоторых элементов репертуара поведения крыс, обученных в пищевых лабиринтах: скорости ответной реакции побежки к кормушке, времени побежки и задержки у кормушки после подкрепления, времени возвращения в СК и времени груминг (чистка шерсти) реакции. Следили также за координацией движений.

Первые изменения во временных параметрах пищедобывательного навыка отмечались при дозах 8-10 мг/кг. При каждом последующем увеличении исходной дозы «соединения» на 1-2 мг/кг усиливались нарушения функции двигательных элементов поведения: животные стали медленнее передвигаться к кормушке, дольше задерживаться у кормушки или в других отсеках лабиринта после подкрепления и медленнее возвращаться в СК (табл. 1). Было обнаружено также некоторое мнорелаксантное и седативное действие АН-442-132. Во время передвижения, особенно на гладком полу и на поворотах в лабиринте, у крыс временами подгибались конечности в дистальных суставах и расползались, что приводило к расстройству стато-кинетической координации. При прочих равных условиях эксперимента сравнительно большую устойчивость к «соединению» проявляли крысы-самки. Выявлены также индивидуальные различия в чувствительности крыс к данному веществу. Заслуживает внимания факт быстрого ослабления эффектов «соединения» при повторном его применении, независимо от исходной дозы (10-26 мг/кг). Причем толерантность к нему выражена больше, чем к пуфемиду (3).

Соединение АН-442-132 в определенных дозах аналогично пуфемиду ғызывало парушение навыка возвращения п задержки в СК. В первых пробах крысы либо не входили в СК, останавливаясь у входа и обследуя его, либо входили после тщательного обследования, но выскакивали при закрывании двери СК, а потом и вовсе переставали самостоятельно возвращаться (табл. 2). Эти данные показывают, что под влиянием «соединения» также растормаживается эмоция страха у крыс-усиливается избегательная реакция к СК. В подобной конфликтной ситуации удовлетворение конкурирующих потребностей (в пище и самосохранении) стало практически невозможным. В результате блокировалось целостное пищедобывательное поведение. В ответ на сигнал открывания двери СК крысы, правильно выбирая путь к пище и получая вознаграждение, отказывались возвращаться и задерживаться в СК. Последняя снова приобрела для крыс негативное сигнальное значение, и они стали ее избегать. Вместе с тем динамика развития нарущения поведения свидетельстовала о полной сохранности механизма воспроизведения следов памяти-приобретенного навыка поиска и добывания пищи. Более того, специальные опыты с применением «ручной» пробы (хэндлинг) показали, что у этих животных полностью сохранился также и навык узнавания траекторин обратного кормушки к СК. Но они его не выполняли, в связи с изменениями в соотношении сил конкурирующих потребностей животного, наступавшими под действием соединения АН-442-132. Правомерность данного заключения подтвердилась следующим экспериментом. Сочетание акта принудительного возвращения крыс в СК с пищевым креплением непосредственно в СК привело после неокольких проб к угашению избегательных тенденций к СК, и крысы начали самостоятельно (без ручной пробы!) возвращаться и задерживаться в СК до полного закрывания двери (табл. 2).

Время двигательных реакций, с								Днигательные элементы поведения						
№ пробы	Латентный с побежии	Побежка кормушке	Задержка у кормушки	Возращение в СК	Примечания		№ пробы	Побежка к кормущке	ų,	Возврат в СК	3axon B CK	Уход из	Хэндлииг	Примечания
1 2 3 4 5 6	0,3 0,3 0,3 0,2 0,2 0,2	5,8 3,7 4,0 4,0 3,8 4,2	18 13 17 16 22 18	7 6 6 6 8 6	20 V1985, опыт № 64 перед введением соединения АН442-132		1 2 3 4 5 6	+++++	++++++	++++++	++++++	111111	111111	27 V—1985, опыт № 63 перед введением соединения АН—442—132
1 2 3 4 5 6	8,5 129,0 0,5 1,2 1,3 0,6	29.0 21.0 11.3 11.1 11.3 11.9	300 260 300 300 42 160	0 17 0 0 17 70	Опыт № 3 спустя 67 мин после введения соединения п дозе 18 мг/кг	1.	1 2 3 4	+ + ++	+ + ++	+++1++1	+++++	+	1+1+11	Опыт № 7 спустя 64 мин после введения соеди- нення в дозе 26 мг/кг
1 2 3 4 5 6	0,3 0,1 0,3 0,3 0,3 0,1	5,6 4,0 3,2 3,7 3,7 4,1	25 17 15 14 15 17	11 7 7 12 5 7	22/V—1985, опыт № 65		5 6 7	+ +	+ + +	+++++++	+++1++	++1+1111	+++1+1+1	Подкрепление в СК
							8 9	I	-	1		=	-	Без подкрепления

Примечание Знаки «+» и «—»—наличие и отсутствие реакции соответственно

Таким образом, повышая и поддерживая надлежащий уровень воз будимости нервного субстрата мозга, ответственного за пищевую мотивацию, можно было добиться смены доминирующей потребности у живо ного в момент его нахождения в СК. Вместо избегательной доминанто стала пищевая. Следовательно, нарушения лабиринтного обучения пр действии соединения АН—442—132, как и пуфемида, имеют в свое основе изменения в мотивационно-эмоциональной сфере, а не дефентамяти и собственно «интеллектуальной» деятельности.

Аналогичные изменения в поведснии крыс наблюдались также пр действии антихолинергических препаратов атропина и этпенала (5).

Говорит ли общность эффектов антиконвульсивных средств на ли биринтное обучение об их специфичности, покажут дальнейшие исследования.

Институт экспериментальной биологии Академии наук Армянской ССР

Գ. Ե. ԳՐԻԳՈՐՅԱՆ, Ա. Մ. ՍՏՈԼԲԵՐԳ, Ի. Ա. ՋԱՂԱՑՊԱՆՅԱՆ

3-ամինո-2-իզո-պrոպիլ-6, 6-դիմեթիլ-4-օկսո-5, 6-դիգիդrո-8ն-ը Լրանո [4′,3′:4,5]-տիենո[2,3-դ] պիrիմիդին-4-օնա (ԱՆ-442-132) միացության ազդեցությունը սպիտակ առնետների լաբիրինթային ուսուցման վրա

Հետազոտությունները ցույց տվեցին, որ հակացնցումային դեղամիջու պուֆեմիդն օժտված է ընտրողական աղդեցությամբ։ Բացի ընդհանուր շարժա ղական ակտիվության ընկ≾ումից, նա միաժամանակ վերականգնում է այ նետների մոտ նախկինում տեղ գտած բացասական էմոցիաները, որոնք լա րիրինթային ուսուցման ղարդացման պրոցեսում արգելակվել էին։

Հարց առաջացավ՝ արդյո՞ք Նման արդևցությունը հատուկ է միայն պո ֆեմիդին։ Փորձերը պարզեցին, որ մի շարք հակախոլիներդիկ դեղամիջոցնեն (ատրոպին, էթփենալ և այլն), ինչպես նաև նոր սինթեղված ԱՆ-442-132 միս ցությունն ունեն նույն ազդեցություն առնետների վարքի վրա, ինչպես պուֆեսիրը։ Նրանք ուժեղացնում են կենդանիների մոտ վախի զգացումը և ակտի փախուստային ռեակցիաները միջավայրի որոշ բացասական գործոններն նկատմամբ։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ Г. Е. Григорян, А. М. Стольберг, ДАН АрмССР, т. 79, № 5 (1984). ² Г. Е. Гр горян, Н. Е. Аколян, ДАН АрмССР, т. 80, № 5 (1985) ³ Г. Е. Григорян, Н. Е. Ак лян, А. М. Стольберг, ДАН АрмССР, т. 82, № 2 (1986) ⁴ А. П. Мкртчян, С. Г. Каз рян, А. С. Норавян и др., Хим.-фарм. журн., т. 19, № 5 (1985). ⁵ В. М. Самв лян, Д. А. Герасимян, Изв. АН АрмССР (сер. биол.), т. 16, № 12 (1963)

