1.XXXIII 1986

УДК 530.145

ФИЗИКА

Л. Ш. Григорян, А. А. Саарян

Эффект Казимира для идеально проводящей сферической поверхности

(Представлено академиком АН Армянской ССР Г. С. Саакяном 27/V 1985)

В 60-е гг. в лабораторных условиях было обнаружено явление притяжения между двумя идеально проводящими плоскопараллельными пластинами, соответствующее отрицательному давлению (1)

$$p = -\frac{\pi^2}{240} \frac{hc}{d^4}$$

где d—расстояние между проводниками. Оно возникает в результате возмущения нулевых колебаний электромагнитного вакуума пластинами (2). В аналогичной ситуации для сверхпроводящей сферической поверхности изменение полной энергии вакуума было рассчитано в период с 1968 по 1978 гг. (3-5):

$$E = 0.04618 \frac{\hbar c}{a}$$
, (1)

где a—радиус сферы. В работах ($^{6-8}$) приближенным численным методом вычислены компоненты тензора энергии-импульса электромагнитного вакуума

$$\tau_{i}^{k} = \operatorname{diag}(\varepsilon_{i}, -p_{i}, -p_{\perp}, -p_{\perp}),$$

где є—плотность вакуумной энергии а pи p^{\perp} —соответствующие давления в радиальном и азимутальном направленьях. Ниже точным численным методом рассчитаны є, p, p_{\perp} и установлен ряд свойств τ_{lk} .

В случае сферически-симметрической задачи операторы электромагнитного поля удобно разлагать в ряд по состояниям фотона с определенными значениями энергии $\hbar \omega$, полного момента $\hbar V \overline{l(l+1)}$, где $l=1,2,3\ldots$, его проекции $\hbar m(-l \leq m \leq l)$ и четности $(-1)^{l+1+\lambda}$. Рассмотрим вектор-потенциал в кулоновской калибровке

$$\vec{A} = \sum_{\omega lm\lambda} (c_{\omega lm\lambda} \vec{A}_{\omega lm\lambda} + c_{\omega lm\lambda}^{\dagger} \vec{A}_{\omega lm\lambda}^{\dagger}), \qquad (2)$$

где $c_{\omega lm\lambda}$, $c_{\omega lm\lambda}^+$ —операторы уничтожения и рождения фотона, $\lambda=0$ для фотонов магнитного типа и $\lambda=1$ для фотонов электрического типа (8). Элементарные гармоники $A_{\omega lm\lambda}$ находятся путем решения уравнений Максвелла в пустоте при граничных условиях

$$\vec{E} \times \vec{n} = \vec{H} \cdot \vec{n} = 0 \tag{3}$$

на сверхпроводящей поверхности r=a. В (3) E и H—напряженности электрического и магнитного полей, n=r/r—единичный вектор, а r—радиальная координата сферической системы координат, начало которой мы поместим в центре сферы. Функции $A_{\omega lm\lambda}$ приведены в (8,10). С помощью выражений

$$\varepsilon = \langle 0|(\vec{E}^2 + \vec{H}^2)|0\rangle / 8\pi, \quad p_{\perp} = (\varepsilon - p)/2,$$

$$p = \varepsilon - \langle 0|[(\vec{n} \cdot \vec{E})^2 + (\vec{n} \cdot \vec{H})^2]|0\rangle / 4\pi,$$
(4)

где /0 > -амплитуда состояния электромагнитного вакуума, и разложений E, H, вытекающих из (2), после суммирования по m находим, что внутри сферы

$$\varepsilon = \frac{\hbar c}{8\pi a^{3}} \sum_{\omega l \lambda} \omega \frac{l j_{l+1}^{2}(\omega r) + (l+1)j_{l-1}^{2}(\omega r) + (2l+1)j_{l}^{2}(\omega r)}{j_{l}^{2}(\omega a) - j_{l-1}(\omega a)j_{l+1}(\omega a)}$$

$$p_{\perp} = \frac{\hbar c}{8\pi a^{3}r^{2}} \sum_{\omega l \lambda} \frac{l(l+1)(2l+1)j_{l}^{2}(\omega r)}{\omega \left[\frac{2}{3}(\omega a) - j_{l-1}(\omega a)j_{l+1}(\omega a)\right]}.$$
(5)

Здесь j_t —сферическая функция Бесселя, а ω пробегает дискретный набор значений, определяемый условиями (3):

$$j_l(\omega a) = 0$$
 при $\lambda = 0$, (6) $d[aj_l(\omega a)]/da = 0$ при $\lambda = 1$.

В соответствии со стандартной процедурой перенормировки расходящихся сумм нужно в (5) ввести обрезающую функцию $\psi(\mu\omega)$ (μ — параметр обрезания), $\psi(0)=1$, после чего все суммы становятся конечными. Теперь задача сводится к вычислению предела

reg
$$<0|\tau_{ik}|0>=\lim_{\mu\to+0}[<0|\tau_{ik}(\mu, a)|0>-\lim_{a\to\infty}(0|\tau_{ik}(\mu, a)|0>].$$

Нужно также доказать, что результат не зависит от вида обрезающей функции. С этой целью воспользуемся формулой

$$\sum_{|z_n| \ge 0} \frac{f(z)}{s'(z_n)} = w + \int_0^\infty f(t)dt + i \int_0^\infty \left\{ \frac{f(it)}{\exp[-2\pi i s(it)] - 1} - \frac{f(-it)}{\exp[2\pi i s(-it)] - 1} \right\} dt$$
(7)

где w=0, если $s(0)\neq 0,\pm 1,\pm 2,\ldots$, и w=f(0)/2s'(0), если $s(0)=0,\pm 1,\pm 2,\ldots$ В (7) суммирование ведется по всем неотрицательным z_n , для которых $s(z_n)=0,\pm 1,\pm 2,\ldots$ При этом предполагается, что функции s(z), f(z) комплексной переменной z=x+iy аналитичны в в полуплоскости x>0, $s'(z_n)\neq 0$ и

$$\lim_{y \to \pm \infty} \Phi(x, y) = 0, \quad \lim_{x \to +\infty} \Phi(x, y) = 0.$$
 (8)

Здесь $\Phi(x, y) = f(z)\{1 - \exp[-2\pi i s(z) \operatorname{sgn}(y)]\}^{-1}$. Доказательство равенства (7) не представляет особого труда. В литературе рассмотрен

его частный случай s(z)=z, известный под названием формулы Абеля—Плана (111). Функцию s(z) определим выражением (3)

$$s_{M}(z) = \begin{cases} -(1/\pi) \arctan[j_{l}(z)/n_{l}(z)] & \text{при } \lambda = 0 \\ -(1/\pi) \arctan[j_{l}(z)]'/[zn_{l}(z)]' \end{cases} \text{ при } \lambda = 1$$
(9)

так, чтобы в (5) суммирование по ω (определяемое уравнениями (6)) велось по целочисленным значениям функции $s_{kl}(\omega a)$. В (9) $n_l(z)$ —сферическая функция Неймана, а штрих пад функцией означает производную по ее аргументу. Нетрудно видеть, что $j_l^2(z)$ — $-j_{l-1}(z)j_{l+1}(z)=\pi s_{kl}'(z)/z^2$, когла $z=\omega a$. По этой причике функция f(z), фигурирующая в (7), аналитична. С помощью асимптотических разложений функций Бесселя (12) можно убедиться, что f(z) и s(z) удовлетворяют условиям (8). Следовательно, обобщенная формула Абеля—Плана (7) применима к (5), и регуляризация τ_{lk} сводится к отбрасыванию первого интеграла в правой части (7). В результате

$$q = -\frac{\hbar c}{4\pi^3 a^4} \lim_{\mu \to +0} \sum_{l=1}^{\infty} \int_{0}^{\infty} \chi\left(\frac{\mu}{a}z\right) F(u)(z, x) dz, \quad q = \varepsilon, p, p_{\perp}, \tag{10}$$

где

$$x = r/a < 1, \ \chi(y) = [\psi(iy) + \psi(-iy)]/2,$$

$$F_{I}^{(c)} = z^{3}\Omega_{I}(z)[li_{l+1}^{2}(zx) + (l-1)i_{l-1}^{2}(zx) - (2l+1)i_{l}^{2}(zx)], \tag{11}$$

$$F_{l}^{p} \perp^{j} = l(l+1)(2l+1)\frac{z}{x^{2}}\Omega_{l}(z)i_{l}^{2}(zx), \quad \Omega_{l}(z) = \frac{k_{l}(z)}{i_{l}(z)} + \frac{[zk_{l}(z)]'}{[zi_{l}(z)]'},$$

а $t_l(z) \equiv \sqrt[4]{\pi/2z} I_{l+1/2}(z)$, $k_l(z) \equiv \sqrt[4]{\pi/2z} K_{l+1/2}(z)$ —модифицированные сферические функции Бесселя I и III рода (12). Для частного вида обрезающей функции $\psi(y) = e^{-y}$ соотношения (10), (11) были получены в (5) другим способом.

Анализ асимптотических разложений функций $F^{(q)}$ показывает, что в (10) интеграл и сумма сходятся настолько быстро, что к пределу $\mu \to 0$ можно переходить непосредственно под интегралом. Имеем (см. (11))

$$q = -\frac{hc}{4\pi^3 a^4} \sum_{l=1}^{\infty} \int_{0}^{\infty} F_l^{(q)}(z, x) dz, \quad q = \varepsilon, p, p_{\perp},$$
 (12)

независимо от выбора функции $\psi(\mu\omega)$ в области $0<\omega<\infty$. За пределами проводящей сферы x=r/a>1 с помощью аналогичных выкладок можно вновь прийти к результату (12), не зависящему от вида $\psi(\mu\omega)$. При этом новые $F_i^{(q)}(z,x)$ отличаются от (11) заменой функций $i_l(z)$, $k_l(z)$ местами.

Оказывается, что вакуумный тензор энергии-импульса удовлетворяет ковариантному уравнению гидродинамики $\tau_{l,k}^k = 0$. В сферически-симметрическом случае оно сводится к выражению

$$\frac{dp}{dr} + \frac{2}{r}(p - p_{\perp}) = 0, \tag{13}$$

в справедливости которого нетрудно убедиться. используя рекуррентные соотношения для i_l , k_l .

Простые выражения получаются в центре и на больших расстояниях от проводящей сферы. Здесь дают вклад только мультиполя l=1:

$$\varepsilon(0) = -\frac{\hbar c}{2\pi^2 a^4} \int_0^{\infty} \left[\left(\frac{z-1}{z+1} e^{2z} + 1 \right)^{-1} - \left(\frac{z^2 - z + 1}{z^2 + z + 1} e^{2z} - 1 \right)^{-1} \right] z^3 dz =$$

$$= -0.03811 \frac{\hbar c}{a^4}, \tag{14}$$

$$\frac{\varepsilon(0)}{3} = p(0) = p_{\perp}(0), \ \varepsilon'(0) = p'(0) = p'_{\perp}(0), \ \varepsilon(x) \approx -4p(x) \approx .$$

$$\approx \frac{8}{5} p_{\perp}(x) \approx \frac{\hbar c}{2\pi^2 a^4 x^7}, \text{ при } x \gg 1.$$

Вклад мультиполей высших порядков становится важным вблизи поверхности сферы. Для этого случая в (13) выведена формула

$$\varepsilon(x) \approx -\frac{\hbar c}{30\pi^2 a^4 (1-x)^3}, \quad x \approx 1. \tag{15}$$

Остальные компоненты треско получаются из (13) и (15):

$$p(x) \approx -\frac{\hbar c}{60\pi^2 c^4 (1-x)^2}, \quad p_{\perp}(x) \approx \frac{1}{2} \varepsilon(x), \quad \left(\frac{\varepsilon(x)}{p(x)}\right)' = \left(\frac{p(x)}{p_{\perp}(x)}\right)' \approx -1, \quad x \approx 1.$$
(16)

Приведем также интегральное представление уравнения (13) с граничными условиями (14)

$$p(r) = \frac{1}{r^3} \int_{\eta(r)}^{r} \varepsilon(t) t^2 dt. \tag{17}$$

Здесь $\eta(r)$ равно нулю внутри сферы и ∞ за ее пределами. Из (16) и (17) вытекает, что заключенная внутри идеально проводящей сферы энергия вакуума—бесконечно большая отрицательная величина, а вне сферы—бесконечно большая положительная величина. При этом полная энергия $E=4\pi a^3 \lim_{n \to \infty} \left[p(a-\delta)-p(a+\delta)\right]$ конечна (см. (1)).

Исходя из (14)—(17) для компонент та можно записать следующие простые апроксимационные формулы

$$p(x) \approx \frac{\varepsilon(0)}{3(1-x)^2} e^{-2x}, \quad p_{\perp}(x) \approx \varepsilon(0) \frac{1-x+x^2}{3(1-x)^3} e^{-2x} \quad \text{при } x < 1$$

$$p(x) \approx -\frac{\hbar c e^{-2/x}}{8\pi^2 c^4 x^5 (x-1)^2}, \quad p_{\perp}(x) \approx \frac{\hbar c}{16\pi^2 a^4} \frac{2+5x(x-1)}{x^6 (x-1)^3} e^{-2/x} \quad \text{при } x > 1.$$

Результаты численных расчетов по формуле (12) приведены в таблице. Они позволяют вычислить относительную погрешность апроксимаций (18), которая равна нескольким процентам. Величины ε , p, p_{\perp} вычислены также и в (7,8) на основе формул, полученных в (5). В

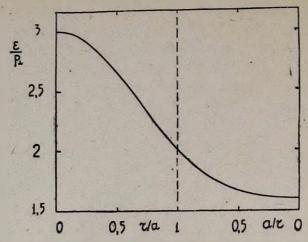


Рис. 1. Отношение плотности энергии вакуума є к азимутальному давлению p_{\pm} в зависимости от расстояния r до центра идеально проводящей сферической поверхности радмуса a. Величины s, p_{\pm} вычислены на ЭВМ по формуле (14).

r/a	g	p	P⊥	r/a	8	p	P⊥
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	-0,03910 -0,04234 -0,04866 -0,06008 -0,08137 -0,1254 -0,2362 -0,6382 -4,127	-0,01290 -0,01353 -0,01470 -0,01667 -0,01998 -0,0258		1.1 1.2 1.3 1.5 1.7 1.9			1,465 0,158 0,040,3 0,006,51 0,001,742 6,948,710-4 4,468,10-4 4,455,10-7 3,309,10-9 3,259,10-16

этих работах авторы I_* , K_* заменили соответствующими асимптотическими разложениями, справедливыми при $v\gg 1$ (v=l+1/2), и ограничились членами порядка 1/v, не оценивая при этом допускаемую ошибку. Так как в (12) $v\gg 3/2$, то неясно, насколько оправданно такое приближение и верно ли оно вообще. Наши расчеты с использованием точных выражений для I_* и K_* позволяют определить относительную ошибку ($\sim 10\%$) результатов (7,8). По точности они уступают простым формулам (18).

Авторы признательны академику АН Армянской ССР Г. С. Саакяну за интерес к работе и ценные стимулирующие обсуждения.

Институт прикладных проблем физики Академии наук Армянской ССР

լ. Շ. ԳՐԻԳՈՐՑԱՆ, Ա. Ա. ՍԱՀԱՐՑԱՆ

Կազիմիբի էֆեկտը իդեալական ճաղուդիչ սֆեւիկ մակեւևույթի ճամաւ

Ուսումնասիրված է էլեկտրամագնիսական վակուումի վիճակը իդեալական հաղորդիչ սֆերիկ մակերևույթի ներսում և դրսում։ Ապացուցված է, որ վակուումի էներգիայի-իմպուլսի թենզորը կախված չէ վերանորման եղանակից և 32 րավարարում է հիդրոդինամիկայի հավասարմանը։ Հաշվված են այդ Թենզորի ըաղադրիչները և դրանց համար ստացված են պարզ անալիտիկ արտահայտություններ։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ А. А. Гриб, С. Г. Мамаев. В. М. Мостепаненко, Квантовые эффекты в интенсивных внешних полях, Атомиздат, М., 1980. ² Н. В. Castmir, Proc. Kon. Ned. Akad. Wetenschap., v. 51, p. 793 (1948). ³ Т. Н. Воуег, Phys. Rev., v. 174, p. 1764, (1968). ⁴ В. Davies, J. Math. Phys., v. 13. p. 1324(1972), ⁵ К. А. Milton, L. L. De Raad, J. Schwinger, Ann. Phys., v. 115, p. 388(1978). ⁶ K. Olaussen, F. Raundall, Nucl. Phys., v. В 192, p. 237(1981). ⁷ I. Brevik, H. Kolbenstvedt, Ann. Phys., v. 149, p. 237(1983). ⁸ I. Brevik, H. Kolbenstvedt, Can. J. Phys., v. 62, p. 805(1984). ⁹ В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский, Квантовая электродинамика, Наука, М., 1980. ¹⁰ Дж. Джексон, Классическая электродинамика, Мир, М., 1965. ¹¹ М. А. Евграфов, Аналитические функции, Наука, М., 1968. ¹² И. Стиган, М. Абрамовиц, Справочник по спецнальным функциям, М., Наука, 1979. ¹³ R. Ваlian, В. Duplantier, Ann. Phys., v. 112, p. (1978).