LXXXIII 1986 1

УДК 519.61

ПРИКЛАДНАЯ МАТЕМАТИКА

Д. З. Геворкян

О сложности линейных вычислений на многопроцессорных системах (Представлено чл.-корр. АН Армянской ССР Р. Р. Варшамовым 1/II 1986 г.)

При решении различных прикладных задач часто требуется вычислять произведение $y=(y_1, y_2, \dots, y_N)^T$ фиксированной $(N\times N)$ -матрицы F на произвольный вектор переменных $x=(x_1, x_2, \dots, x_N)^T$:

$$\bar{y} = F \cdot \bar{x}$$
 (1)

При этом большинство решаемых задач а) имеют массовый характер; б) должны решаться в ограниченном времени; в) требуют обработки больших массивов информации. Это приводит к необходимости разработки вычисляющих произведение (1) параллельных алгоритмов, предназначенных для реализации на многопроцессорных вычислительных системах, представляющих собой множество (из K) процессорных элементов (ПЭ), объединенных с помощью специальной системы коммутации и выполняющих лкоро из I заданных операций (1,2). Если K—ограничено, то говорят, что алгоритм обладает ограниченным параллелизмом, в противном случае—неограниченным параллелизмом.

В зависимости от параллелизма выполнения операций и передачи данных многопроцессорные системы делятся на системы типа SIMD (одна команда—много данных), MISD (много команд—одно данное) и MIMD (много команд—много данных) (2).

В работе (3) были построены реализуемые на системах типа SIMD параллельные алгоритмы с ограниченным параллелизмом, вычисляющие дискретные ортогональные преобразования Фурье, Уолша, ВКФ.

В данной работе исследуется сложность вычисления произведения (1) на системах типа SIMD и MISD. С этой целью введены модели линейных SIMD- и MISD-вычислений и найдены нижние оценки для числа параллельных шагов, необходимых для вычисления (1) посредством этих вычислений. Построены асимптотически оптимальные—с числом шагов, по порядку не превышающим найденную нижнюю оценку,—линейные SIMD-вычисления с ограниченным параллелизмом, вычисляющие широкий класс дискретных ортогональных преобразований (Фурье, Хаара, Уолша и др.). Предложенные алгоритмы обладают тем свойством, что число К используемых процессорных элементов может быть задано заранее, что важно с точки зрения практической реализации и надежности.

Пусть $X = \{x_1, x_2, ..., x_N\}$ — множество входных переменных над

полем комплексных чисел C, и пусть $z_j^s = x_{l_k}$; -m < j < 0; $s \in S_j \subset \{1,$

2, ..., K $x_{l_k} \in X$ (соответствие взаимнооднозначно).

Определение 1. Линейным K-параллельным SIMD-вычислением назовем последовательность групп операций такую, что j-я $(j=1, 2, \ldots, L)$ группа есть:

либо $z_j^s \leftarrow z_p^r$ $(r \neq s)$ для всех $s \in S_j \subset \{1, 2, ..., K\}$ (обмены);

либо $z^s \leftarrow \lambda_j^s \cdot z_q^s$ ($\lambda_j^s \in C$) для всех $s \in S_j \subset \{1, 2, ..., K\}$ (умножения); либо $z_j^s \leftarrow z_j^s + z_j^s$ для всех $s \in S_j \subset \{1, 2, ..., K\}$ (сложения).

Индексы p, q, t, l, r зависят от j и $s; -m \le p, q, t, l < j; <math>r \in S_p$.

Каждой рабочей переменной z^s линейного SIMD-вычисления естественным образом соответствует некоторая линейная функция от x_1, x_2, \ldots, x_N , называемая значением z^s . Скажем, что линейное K-параллельное SIMD-вычисление вычисляет произведение $y=(y_1, y_2, \ldots, y_N)^T$ фиксированной $(N \times N)$ -матрицы F на произвольный вектор $\overline{x}=(x_1, x_2, \ldots, x_N)^T$, если при любых значениях x_l значения всех y_m встречаются среди значений z^s , и обозначим через $SMK(F) = \{\beta\}$ класс всех таких вычислений, и пусть $SMK(F, \lambda) = \{\beta \in SMK(F)/(1/|J|) \sum_{j \in J} (1/|S_j|) \sum_{j \in S} |\lambda_j|^2 = \lambda\}$, где J-множество всех индексов j,

соответствующих умножениям в вычислении в.

Обозначим через L_{β}^{ρ} , L_{β}^{+} , L_{β}^{\times} число параллельных шагов (число групп) в вычислении β , на которых выполняются обмены, сложения и умножения на комплексные константы соответственно: $\mu > 1$ —отношение среднего времени умножения к среднему времени сложения на $\Pi \ni$.

Теорема 1. Пусть $\beta \in SMK(F)$ и $c = \max_{j \in J} \{2, |\lambda_j^s|^{1/\mu}\}$. Тогда

$$L_{3}^{+} + \mu \cdot L_{3}^{\times} \geqslant \log|\Delta(F)|/(K \cdot \log c)$$
 (2)

где $\Delta(F)$ —наибольший по модулю минор матрицы F.

Теорема 2. Для всякого $\beta \in SMK(F, \lambda)$ справедливо неравенство

$$L_3^9 + (\log_2 3) \cdot L_3^+ + (\log_2(\lambda + 1)) L_3^{\times} \ge 2 \cdot \log_2|\det F|/K$$
 (3)

Определение 2. Линейным MISD-вычислением γ длины L_{γ} с длиной конвейера K назовем последовательность групп операций такую, что j-я $(j=1,\,2,\,\ldots,\,L_{\gamma})$ группа есть

$$\overline{v}_{j}^{s} \leftarrow A_{j}^{s} \cdot \overline{u}_{j}^{s}$$

где $r_1 = \min\{j, K\} \gg s \gg r_2 = \begin{cases} 1, & \text{при } j \ll L - K \\ j + K - L, & \text{при } j \gg L - K \end{cases}$; $\overline{v}_j^s = (v_j^s(1), v_j^s(2))^T$;

 A_{j}^{s} — (2×2) -матрицы с элементами $\alpha_{j}^{s}(t, l)\in C; \ \overline{u}_{j}^{s}\in X^{s}$ при s=1 и $L-K\leqslant s=1$ и $u_{j}^{s}=v_{j-1}^{s-1}$ в других случаях.

Класс линейных MISD-вычислений γ с длиной конвейера K, вычисляющих произведение (1) (при любых значениях x_t значения y_m встречаются среди значений $v_j^s(t)$, t=1,2) обозначим через MSK(F) и пусть

 $MSK(F, \alpha) = \{ \gamma \in MSK(F) | |\alpha_j^s(t, l)| \leq \alpha; \ j = 1, 2, ..., L_7; \ s = r_1, r_1 + 1, ..., r_2 \}$ $T е о р е м а 3. \ \mathcal{L}_{I} \mathcal{A} s c s k o z o \ \gamma \in MSK(F) \ cnpased ливо \ неравенство$ $L_{I} \geq \log |\det F| / \log b, \tag{4}$

$$2\partial e \ b = (1/L_{\gamma}) \sum_{j=1}^{L_{\gamma}} \left[\prod_{s=r_1}^{r_s} (1+(1/2)\|A_j^s\|_2^2)^{\bullet} \right].$$

Теорема 4. Для всякого үЄМSK(F, a) справедливо неравенство

$$L_{\tau} \geqslant \log|\Delta(F)|/\log(2\alpha) + K \tag{5}$$

Покажем асимптотическую достигаемость оценок (2), (3) для достаточно широкого класса дискретных ортогональных преборазований (ДОП), т. е. для вычисления произведения (1), когда $F = H_N$ есть $(N \times N)$ -матрица $(N = q^m)$, строки которой соответствуют дискретным функциям в некотором ортогональном базисе и которую можно представить в виде произведения слабозаполненных матриц (4):

$$H_N = G_{m-1} \cdot G_{m-2} \cdot \ldots \cdot G_0 \tag{6}$$

Большинство элементов в матрицах $G_r(r=\overline{0,m-1})$ равны нулю, а ненулевые элементы независимо от базисной системы функций расположены в определенном порядке (4). На представлении (6) основаны алгоритмы быстрых дискретных ортогональных преобразований (БДОП), вычисляющие ДОП с матрицей H_N по соотношениям:

$$\overline{z}_0 = x$$
; $\overline{z}_{r+1} = G_r \cdot \overline{z}_r$, $r = 0, 1, ..., m-1$; $\overline{y} = \overline{z}_m$

Для вычисления z_{r+1} по z_r (r-й этап БДОП) требуется q^{m-1} умножений ($q \times q$)-матриц $V_r^s(s=\overline{1,q^{m-1}})$, составленных из элементов G_r , на ($q \times 1$)-подвекторы вектора z_r . В зависимости от элементов V_r^s можно получить класс \mathcal{H} матриц H_N , соответствующих ДОП с алгоритмами БДОП, в частности, дискретным преобразованиям Фурье (ДПФ), Уолша (ДПУ), Виленкина-Крестенсена (ВКФ), Хаара (ДПХ) (s).

$$\mathcal{H}_N = (G'_{m-1} \cdot P_q) \cdot (G'_{m-2} \cdot P_q) \cdot \dots \cdot (G'_0 \cdot P_q),$$
 (7)

где $G_r(r=0, m-1)$ —квазидиагональные матрицы с блоками V_r^s на диагонали; P_q —матрица перестановки:

$$P_q \cdot (\alpha^0, \alpha^1, \ldots, \alpha^{N-1})^T =$$

$$= (\alpha^{0}, \alpha^{N/q}, \ldots, \alpha^{(q-1)N/q}, \alpha^{1}, \alpha^{N/q+1}, \ldots, \alpha^{(q-1)N/q+1}, \ldots, \alpha^{N-1})^{T}$$

Теперь приведем вычисляющие ДОП с матрицами $H_N \in \mathcal{H}$ линейные SIMD-вычисления, которые схематически можно описать следующим образом.

Алгоритм I.

Вход. Вектор $\bar{x} = (x_0, x_1, ..., x_{N-1})^T$, $N = q^m$. Число ПЭ, $q^{m'}$ ($m' \le m-1$).

Выход. Вектор $y = H_N \cdot \bar{x}$, где $H_N \in \mathcal{H}$.

Вычисление. Вычисление состоит из *m* этапов, определяемых соотношениями:

$$\overline{z}_0 = \overline{x}; \ \overline{z}_{r+1} = G'_r \cdot (P_q \cdot \overline{z}_r), \ r = 0, 1, \ldots, \ m-1; \ \overline{y} = \overline{z}_m$$

На каждом этапе сначала осуществляется перестановка компонент исходного вектора $\overline{z_r} = (\sigma_r^0, \ldots, \sigma_r^{N-1})^T$ согласно оператору P_q . Затем выполняются $q^{m-m'-1}$ операций, p-я из которых $(p=0, 1, \ldots, q^{m-m'-1}-1)$ состоит из следующих шагов:

 $waz\ I$. В каждую s-ю ветвь вычисления (в s-й ПЭ) засылается подвектор $\overline{z}_r^l = (\sigma_r^l, \ \sigma_r^{Mq+l}, \ \dots, \ \sigma_r^{(q-1)N/q+l})^T$ вектора $P_q \cdot \overline{z}_r$, где $l = p \cdot q^m + 1$

+s $(s=\overline{1,q^m}).$

 $waz \ II.$ Параллельно в каждой ветви $s\ (s=\overline{1,q^{m^*}})$ вычисляются $V^l_i\cdot\overline{z}^l_i$.

шаг III. Полученные на втором шаге результаты посылаются обратно.

Перейдем теперь к случаю, когда число ПЭ-К задано заранее.

Алгоритм II (вычисление ДОП потока векторов).

Вход. Поток векторов $\chi = \{\bar{x}(1), \bar{x}(2), ..., \bar{x}(i), ...\}$

Число ПЭ. Произвольное К.

 $B\omega xo\partial$. Поток векторов $Y = \{\overline{y}(1), \overline{y}(2), ..., \overline{y}(i), ...\}$, где $\overline{y}_i = H_N \cdot \overline{x}(i), H_N \in \mathcal{H}; i = 1, 2, ...$

Вычисление. Представим число К в виде:

$$K = \sum_{h=0}^{t-1} q^{mh},$$

где $0 < m_h < m-1$; $m_{h+1} > m_h$ и сгруппируем ветви вычисления (соответственно ПЭ системы), включив в h-ю группу q^{m_h} ветвей. Из очередных K векторов потока χ образуем t массивов, включив в h-й массив X(h) q^{m_h} векторов. В каждой h-й группе ветвей параллельно вычисляются ДОП векторов из h-го массива, последовательно для каждого вектора $\bar{x}(i) \in X(h)$ применяя алгоритм 1 при $m' = m_l$. После этого вычисляются ДОП следующих K векторов потока χ и т. д.

Утверждение. При любом K построенные линейные K-параллельные SIMD-вычисления асимптотически оптимальны (т. е. асимптотически достигаемы оценки (2) и (3)) в классах SMK(H_N , λ), где λ определяются элементами матриц G_r в представлении (6) для $H_N \in \mathcal{H}$. В частности для ДПФ, ДПУ, ВКФ $\lambda = 1$.

Замечание. Полученные результаты можно обобщить для задачи вычисления ДОП функций, определенных на абелевой группе G порядка $N=q^m$ по системе характеров G.

Автор выражает искреннюю благодарность С. С. Агаяну за постановку задач и руководство работой.

Вычислительный центр Академии наук Армянской ССР н Ереванского государственного университета

Դ. Ձ. ԳԵՎՈՐԳՑԱՆ

Բազմապրոցեսորային ճամակարգերում գծային ճաշվումների բարդության վերաբերյալ

Աշխատանքում հետազոտվում է SIMD և MISD տեսակի համակարգերի (*) միջոցով $(N\times N)$ -մատրիցի և $(N\times 1)$ -վեկտորի արտադրյալը հաշվելու բարդությունը։ Այդ նպատակով ներմուծված են գծային SIMD-և MISD-հաշ-22

վումների հասկացությունները և գտնված են դրանց վրա սահմանված բարդության ստորին գնահատականներ։ Կառուցված են դիսկրետ օրթոգոնալ ձևափոխություններ հաշվող ասիմպտոտիկ օպտիմալ (ներմուծված բարդության նկատմամբ) գծային SIMD-հաշվումներ, ըստ պրում պահանջվող պրոցեսորային տարրերի թիվը կամայական է, որը շատ կարևոր է գործնական տեսանկյունով։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՑՈՒՆ

¹ Элементы параллельного программирования, Радио и связь, М., 1983. ² Алгоритмы, математическое обеспечение и архитектура многопроцессорных вычислительных систем, Наука, М., 1982. ³ S. S. 'Agaian, D. Z. Gevorkian, Colloquia Mathematica Societatis János Bolyai, 44, Theory of algorithms, Pech (Hungary), p. 15—25 (1984). ⁴ А. И. Солодовников, И. И. Канатов, А. М. Спиваковский, Вопросы теории систем автоматического управления. Вып. 2, Изд-во ЛГУ, с. 99—112 (1976).