LXXXIII 1986

УДК 512.86

МАТЕМАТИКА

А. Д. Туниев, А. С. Туниев

Об одном методе обращения прямоугольных матриц и его применении

(Представлено чл.-корр. АН Армянской ССР Р. Р. Варшамовым 20/XII 1984)

В данной работе предлагаются метод обращения прямоугольных матриц и его применение в линейном программировании. В основу этой работы положены теоретические положения, изложенные в $(^{1,8})$. Предлагаемые методы отличаются от приведенных в $(^{1,2})$ тем, что здесь рассматривается случай, когда $K_i \cap K_j \neq \emptyset$, $i \neq j$. Приведем необходимые обозначения из $(^3)$. Вектор $x = \{x_i\}$, где i пробегает множество N, обозначим x[N]. Если $K \subset N$, то соответствующий кусок вектора обозначим x[K]. Символ $a \in M$, $N = \{a_{ij}\}$ обозначает матрицу, индексы строк и столбцов которой пробегают множество M и N.

1°. Описание метода. Рассмотрим линейную алгебраическую систему

$$a[M, N]x[N] = a[M, 0],$$
 (1)

где $M=\{1,2,\ldots,m\}$, $N=\{1,2,\ldots,n\}$. Пусть ранг a[M,N] равен r и первые ее r строк линейно-независимы. Обозначим $R=\{1,2,\ldots,r\}$ $N'=\{0,1,\ldots,n\}$ и положим $a^0[M,N']=a[M,N']$. Сущность метода заключается в следующем.

1. Последовательно для $s=1,\,2,\,\ldots,\,r$ выбираем $K_s \subseteq N$ такое что $\|a^{s-1}[s,\,K_s]\| \neq 0$, и полагаем

$$a^{s}[i, N'] = \begin{cases} \frac{a^{s-1}[i, N']}{\|a^{s-1}[i, K_{i}]\|}, & \text{при } i = s, \\ a^{s-1}[i, K_{i}]\|, & \text{при } i \in M \setminus s, \end{cases}$$

rge $\alpha_i^s = \alpha_i^s(K_s) = -a^{s-1}[i, K_s]a^s[s, K_s], i \in M \setminus s.$

2. Через r шагов получим эквивалентную систему $a^r[R, N]x[N] = -a^r[R, 0]$.

3. Пусть $K = \bigcup_{s \in R} K_s$. Строим матрицу $b[R, K] = \{b[s, j]\}$, где

$$b[s,j] = \begin{cases} a^s[s,j], j \in K_s, \\ 0 & j \in K \setminus K_s \text{ (s \in R)}. \end{cases}$$
 (2)

4. Пусть $x^0[K, N'] = b[R, K]^T a^T [R, N']$. Формируем систему $x^0[K, N]x[N] = x^0[K, 0]$.

Теорема 1. При введенных предположениях справедливы утверждения:

a) $x^0[K, K]x^0[K, j] = x^0[K, j], j \in N';$

б) $x^0[K, j]$ ортогонален ядру матрицы b[R, K], $j \in N$;

в) $a[M, K]x^0[K, j] = a[M, j]$, $j \in N'$, при этом подобное разложение в рассматриваемом смысле (при $\{K_1, K_2, \ldots, K_r\}$) является единственным.

Доказательство теоремы 1 проводится по схеме теоремы 2 из (¹). Следствие. Если $x^0[K,0]$ и x'[K',0]—решения (особые) системы (1) соответственно при $\{K_1,K_2,\ldots,K_r\}$ и $\{K_1,K_2',\ldots,K_r'\}$, где $K_s \subseteq K_s'$, $s \in R$; $K' = \bigcup_{s \in R} K_s'$, то $\|x^0[K,0]\| \gg \|x'[K',0]\|$.

Замечание 1. Если в описанном методе на каждом s-ом шаге преобразуются только элементы, стоящие ниже s-ой (s=1, 2, ..., s) строки, то для нахождения решения системы (1), согласно формуле (4) из (1), организуется обратный ход.

2°. Об одном классе полуобратных матриц. Пусть $b[N, N] = a[M, N]^T a[M, N]$. Рассмотрим нормальное матричное уравнение

$$b[N, N]x[N, M] = a[M, N]^{T}$$
 (3)

Пусть $K=N=\bigcup_{s\in R}K_s$, где $K_s\subseteq N$, $s\in R$. При $\{K_1,K_2,\ldots,K_r\}$ применим к системе (3) описанный выше метод. Тогда после r шагов получим эквивалентную систему вида $p[N,N]x[N,M]=\tilde{a}[N,M]$, где a[N,M]—особое решение (3).

Теорем в 2. Полуобратная матрица $\overline{a}[N,M]$ обладает первыми тремя свойствами частично-псевдообратной матрицы (1) и в рассматриваемом смысле единствечная.

3°. Линейное программирование. Рассмотрим задачу линейного программирования: максимизировать линейную форму

$$c[N]x[N] \tag{4}$$

при

$$a[M, N]x[N] = a[M, 0], x[N] \gg 0[N].$$
 (5)

 a° . 1. Признаки оптимальности особого плана. Пусть $K \subseteq N$ и $\widetilde{a}[K,M]$ полуобратная матрица относительно матрицы a[M,K]. Тогда: а) расширенные оценки $x^{\circ}[0,j] = c[K]\widetilde{a}[K,M]a[M,j] - c[j] = \widetilde{a}[K,M]^Tc[K]^Ta[M,j] - c[j], j \in N';$ б) если $x^{\circ}[0,j] \geqslant 0$, $j \in N'$ и $x[K] = \widetilde{a}[K,M]a[M,0] \geqslant 0[K]$, то из критерия оптимальности Л. В. Канторовича (4) следует, что x[K] — решение задачи (4), (5), а $\lambda[M] = \widetilde{a}[K,M]^Tc[K]^T$ — решение сопряженной к ней задачи.

3°.2. Модификация расширенного симплекс-метода (2). Пусть задача (4), (5) не вырожденная, $x^0[M, N'] = a[M, N']$, $x^0[M, M]$ —единичная матрица, $x^0[M, 0]$ —опорный план и $x^0[0, j]$, $j \in N'$ —оценки (при j = 0, c[j] = c). Опишем переход от s-го шага к s+1, где s=0, 1, 2, ..., s. Пусть после $s \ge 1$ шагов получена система $x^s[M, N]x[N] = x^s[M, 0]$, оценки $x^s[0, j]$, $j \in N'$, и система векторов $\{b[i, K_i]\}_{i \in S_d}$, где $S_d = \{1, 1, 2, ..., 2, ..., 2, ...\}$

2, ..., d}, $d \leqslant m$ (при s=0 $S_d = \emptyset$),

Описание ме тода. 1. Пусть $x_s[0,j] < 0$, $j \in \overline{K}_{s+1}$, где $\overline{K}_{s+1} \subseteq N^*$. 2. Пусть $x^s[i,0] > 0$, $i \in M^{**}$. Определяем

$$\theta_f = \frac{x^s[f,0]}{\|x^s[f,\widetilde{K}_f]\|} = \min_{t} \frac{x^s[t,0]}{\|x^s[t,\widetilde{K}_t]\|}$$

для тех i, для которых вектор $x^s[i, \overline{K}_i]$ содержит sce положительные компоненты вектора $x^s[i, \overline{K}_{s+1}]$. Ясно, что $\overline{K}_i \subseteq \overline{K}_{s+1}$.

3. Шаг обобщенного жорданового исключения. Полагаем

$$x^{s+1}[i, N'] =$$

$$\begin{cases} \frac{x^{s}[i, N']}{\|x^{s}[i, \widetilde{K}_{l}]\|}, & \text{при } l = f, \\ x^{s}[i, N'] + \alpha_{l}^{s+1}x^{s+1}[f, N'], & \text{при } l \neq f, \end{cases}$$

где $a_i^{s+1} = a_i^{s+1}(\widetilde{K}_f) = -x^s[i, \widetilde{K}_f]x^{s+1}[f, \widetilde{K}_f], i \neq f.$

4. Если $f \in S_d$, то полагаем $\tilde{b}[f, K_f] = x^{s+1}[f, \bar{K}_f]$, $\tilde{b}[i, K_l] = b[i, K_l]$, $i \in S_d \setminus f$.

Если $\widetilde{f \in S_d}$, то полагаем $\widetilde{b}[f, K_f] = x^{s+1}[f, \widetilde{K}_f]$, $\widetilde{b}[i, K_l] = b[i, K_l]$, $i \in S_d$ $(f+d \leqslant m)$.

- 5. Если оценки $x^{s+1}[0,j] \geqslant 0$, $j \in N$, то переходим к п. 6, в противном случае переходим к п. 1, где полагаем s=s+1.
- 6. Пусть $f \in S_d$. Полагаем $K = \bigcup_{l \in S_d} K_l$ и строим матрицу $\widetilde{b}[S_d, K] = \{\widetilde{b}[l,j]\}$, где

$$\tilde{b}[i,j] = \begin{cases} \tilde{b}[i,j], \text{ при } j \in K_l, \\ 0, \text{ при } j \in K / K_l \ (i \in S_d). \end{cases}$$

Тогда $\{x[K] = b[S_d, K]^T x^{s+1}[S_d, 0], x[M \setminus S_d] = x^{s+1}[M \setminus S_d, 0]\}$ —особое решение задачи (4), (5).

Если $f \in S_d$, то в пункте 6, с учетом (6), полагаем $K = K \cup K_f$, $S_d = S_d \cup f$.

Доказательство конечности метода проводится по схеме теоремы 2 из (2).

- Замечание 2. Предлагаемый метод с учетом 3°.1 может лечь в основу для пересмотра метода обратной матрицы и двойственного симплекс-метода.
- 4° . О дальнейшем развитии LU-разложения***. Используя параметрическое линейное преобразование (1), можно показать, что если a[M,N] матрица полного ранга, то при некоторых естественных предположениях и выборе $\{K_1,K_2,\ldots,K_m\}$

$$a[M,N]=L_K[M,M]U_K[M,N]$$
, где $K=N=\bigcup_{i=1}^m K_i$ (7)

при этом данное разложение в рассматриваемом смысле единственное. Здесь $L_{\mathcal{K}}[M,M]$ нижняя треугольная матрица, диагональные

^{*} Если для некоторого i, $x^s[i,j] < 0$ и $x^s[0,j] < 0$, то задача (4), (5) неразрешима ** Если для некоторых i, $x^s[i,0] = 0$. то определяем коэффициенты разложения по псевдобазису и, как в расширенном симплекс-методе, исключаем нулевые компоненты плана.

^{***} Результаты, изложенные в п. 4°, сформулированы и доказаны А. Д. Туниевым.

элементы которой равны единице, а "куски" строк $u_K[M,N]$ удовлетворяют условию: $u_K[i,K_i]u[j,K_i]=0$, i < j ($i=1,2,\ldots,m-1$; $j=1,\ldots,m-1$)

 $=2, 3, \ldots, m$).

Разложение (7) можно представить в виде произведения элементарных матриц (подобно тому, как это делается для LU-разложения). Последнее позволяет оценить ошибки округления методов, основанных на данном разложении. В частности, на основании (7) был обобщен метод Краута и с учетом соображения из (5) показано, что если в обобщенном методе Краута используется режим накопления скалярного произведения, то точность полученного результата определяется $\beta = \beta(K)$, которая характеризует рост элементов.

НПО Министерства местной промышленности Армянской ССР ЕрНИПИ АСУГ

Ա. Դ. ԹՈՒՆԻԵՎ, Ա. Ս. ԹՈՒՆԻԵՎ

Ուղղանկյան մատրիցների ճակադարձելիության մի մեթոդի և նրա կիրառությունների մասին

Աշխատանքում առաջարկվում է ոչ Թե մեկ, այլ մի քանի էլեմենտներ<mark>ի</mark> (ուղղորդ-վեկտորի) ընտրությամբ պայմանավորված ուղղանկյան մատրիցների հակադարձման մեթոդ։

Առաջարկվող մեթոդը հիմք է հանդիսանում Մուր-Պենրոուզի հայտնի մատրիցայի ընդհանրացման համար։ Ցույց է տրված ստացված արդյունքների կիրառությունը գծային ծրագրավորման մեջ։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ А. Д. Туниев, Кибернетика, № 3, 1983. ² А. Д. Туниев, Кибернетика, № 4, 1984. ³ И. В. Романовский, Алгоритмы решения экстремальных задач, Наука, М., 1977. ⁴ Л. В. Канторович, ДАН СССР, т. 37, № 7—8 (1942). ⁵ В. В. Воеводин, Вычнслительные основы линейной алгебры, М., Физматгиз, 1961.